
Sysrevving

Gjalt-Jorn Peters

2024-02-26T00:00:00+01:00

Table of contents

Preface 6

1 Types of reviews 7
1.1 Narrative Reviews . 7
1.2 Conceptual Reviews . 7
1.3 Systematic Reviews . 7
1.4 Meta-analyses . 7
1.5 Scoping Reviews . 8

I Planning 9

2 Introduction to Planning 10
2.1 Overview . 10
2.2 Be explicit for redundancy, transparency, and future you 11

3 Research Questions 12
3.1 Systematic Reviews . 12
3.2 Scoping Reviews . 12

4 Planning the Synthesis 14

5 Planning the Extraction 15
5.1 Introduction to extraction . 15
5.2 Entities . 15

5.2.1 Identifiers and titles . 15
5.2.2 Descriptions and extraction instructions 16
5.2.3 Values to be extracted . 16
5.2.4 Hierarchical structure and container entities 16
5.2.5 Repeating entities . 17
5.2.6 Clustering entities (‘lists’) . 18

5.3 Value Templates . 19
5.3.1 Validation of extracted values . 20

5.4 Details of the Rxs specification . 20
5.4.1 The entities worksheet . 21
5.4.2 The valueTemplates worksheet . 22

2

5.4.3 The definitions worksheet . 23
5.4.4 The instructions worksheet . 23
5.4.5 The texts worksheet . 23

5.5 Post-hoc entity specification: Txs specifications 23

6 The Categorization-Coding Continuum 24
6.1 Categorization . 24
6.2 Ambiguity . 25
6.3 The cost of categorization . 25
6.4 Coding after extraction . 26
6.5 The categorization-coding continuum . 27

7 Planning the Screening 28

8 Planning the Search 29
8.1 Query Crafting . 29
8.2 Queries as logical expressions . 29
8.3 Database fields . 30
8.4 Wildcard characters . 30
8.5 Team Consensus and Expert Consultation . 31
8.6 Databases versus Interfaces . 31
8.7 “Smart” searching . 32
8.8 Query validation . 33
8.9 Exporting query hits . 33

9 (Pre)registrations 34

II Execution 35

10 Executing the Search 36
10.1 Running your queries . 36
10.2 Exporting query hits . 36
10.3 Importing your search hits . 36
10.4 Deduplicating your search hits . 36

11 Executing the Screening 37
11.1 Prepare JabRef for screening . 37
11.2 Screening in JabRef . 39

12 Executing the Extraction 40
12.1 Data management . 40
12.2 Extracting entities . 40

3

12.3 The structure of an Rxs file . 40
12.3.1 The bits you can ignore . 40
12.3.2 The sourceId block . 41
12.3.3 The extractorId block . 45
12.3.4 Starting the actual extraction . 47
12.3.5 Entity containers . 47
12.3.6 Clustering entities . 49
12.3.7 Repeating entities . 51

12.4 Validation of extracted entities . 53
12.5 Contact with authors . 53

13 Executing the Synthesis 54

III Operations 55

14 Ops for the search 57

15 Ops for the screening 58
15.1 First time: preparing a PC . 58

15.1.1 Downloading and installing JabRef . 58
15.1.2 Configuring JabRef . 58

15.2 In every screening session . 63

16 Ops for the extraction 66
16.1 First time: preparing a PC . 66

16.1.1 Installing the software . 66
16.1.2 Installing the R packages . 66
16.1.3 Cloning the repository . 67

16.2 For every source . 69
16.3 Coding an extracted entity . 70

16.3.1 Your codebook . 70
16.3.2 Inductive versus deductive coding . 71
16.3.3 Coding in the ROCK standard . 72
16.3.4 After the coding . 74

17 Ops for the synthesis 75

IV References and Appendices 76

18 Example Projects 77
18.1 NITRO . 77
18.2 Ongoing projects . 77

4

18.3 Preregistrations . 77
18.4 Finished real-life projects . 78

19 Glossary 79

20 Notes 83

21 Drafts 84

5

Preface

Note

Note: this is a living book; i.e. it is still very much a work in progress. The most recent
version will always be available at https://sysrevving.com.

The SysRevving book is an open access book about doing open and systematic systematic
reviews using open source tools. That is not a typo: it really says systematic systematic
reviews, reflecting how this book aims to make systematic reviews as systematic as possible.
This is tied in with the aim of making them as open, transparent, and machine-readable as
possible.

The scientific literature is rapidly expanding, and keeping up-to-date by reading new journal
issues as they come out has been impossible for many years already. As a consequence, two
practices are becoming increasingly common: PhD. candidates starting their project with
a systematic review to get a hopefully unbiased overview of the literature in a field, and
conducting living systematic reviews that can be updated with relatively little effort to provide
an up-to-date database to answer specific questions.

At the same time, the workflow adopted in many systematic reviews is often partly designed
anew for each systematic review. Decisions, procedures, and documentation are often only
human-readable and scattered over multiple files, sometimes even in proprietary file formats
or formats used by free but not free/libre open source software (FLOSS). This book aims to sup-
port a systematic workflow geared towards optimizing transparency and machine-readability.

The idea is that optimizing transparency and machine-readability means that systematic re-
views can ultimately become more scalable, interoperable, and extensible. This in turn means
that there is less wasted effort and eventually, systematic reviews can be accelerated (‘revved
up’, so to speak).

If you prefer, you can download the PDF version or the Ebook version (.epub) of this book.

You can cite this book as:

Peters, G.-J. (2023) SysRevving: A Guide to Open Systematic Reviews. https://doi.org/
k9xc

6

https://sysrevving.com
https://sysrevving.com/sysrevving.pdf
https://sysrevving.com/sysrevving.epub
https://doi.org/k9xc
https://doi.org/k9xc

1 Types of reviews

Scoping reviews, meta-analyses, systematic reviews, narrative reviews, conceptual reviews.

1.1 Narrative Reviews

1.2 Conceptual Reviews

1.3 Systematic Reviews

Systematic reviews differ from conceptual or narrative reviews in that they can afford the
right to make strong statements by virtue of the employed procedures: those can and should
be extremely rigorous, systematic, transparent, and reproducible.

This means that as much as possible, the decisions that are taken must be clearly documented
and justified, so that the inevitable biases that the research team bring to the project can be
taken into account when interpreting the results. It also means that the preparation phase is
vital.

1.4 Meta-analyses

Meta-analysis is a homonym, referring simultaneously to a statistical approach and to a class of
systematic reviews. The statistical approach comprises techniques to quantitatively synthesize
multiple estimates of the same population parameter. Some of these techniques are relatively
simple (such as when synthesizing two or more correlation coefficients), and some are very
sophisticated (such as when using multi-level meta-regression).

The class of systematic reviews known as meta-analyses are those systematic reviews where
the research question can be answered by quantitatively synthesizing a set of estimates, and
where the heterogeneity of those estimates is sufficiently low to warrant such quantitative
synthesis. Confusingly, the estimates of that heterogeneity require conducting a meta-analysis
(the statistical approach). This means that in systematic reviews where the reviewers aim to
quantitatively synthesize multiple estimates, but where those estimates turn out to exhibit so
much heterogneiety so as to preclude a statistical meta-analysis, a statistical meta-analysis

7

is conducted nonetheless to obtain those heterogeneity estimates. The result is a systematic
review that is not a meta-analysis but that does include a statistical meta-analysis.

In such situations, the reviewers have to synthesize the estimates in another way, often resorting
to qualitative integrations or to using visualisations. An insightful visualisation can be a
forest plot, a visualisation typically used by statistical meta-analyses to illustrate how the
synthesized estimate compares to the estimates from the separate studies – but then omitting
the synthesized estimate.

1.5 Scoping Reviews

Scoping reviews or evidence maps (depending on who you ask, these can be the same or
slightly different) differ from most types of systematic reviews in that they don’t answer
substantive research questions (note that when I use “systematic reviews”, that also includes
meta-analyses). Instead, they provide an overview of the scope of the literature: in a sense,
they can tell you which research questions can be answered with systematic reviews.

Where most systematic reviews synthesize the evidence itself, often aiming to provide a more
conclusive answer to the same or similar research questions as the included primary studies
asked, scoping reviews synthesize the metadata about that evidence. They can tell you things
like when most studies were conducted; which (sub)topics received most attention when; which
study designed were used and whether that was associated to (sub)topic; how studies were
distributed geographically; which sample sizes were common; whether any of those variables
shows trends over time; et cetera.

Scoping reviews also produce an extensive database of literature, and are an excellent starting
point for focused systematic reviews. Those also become much easier to plan, since you’ll know
how many studies are available. Depending on the comprehensiveness of your scoping review’s
extraction, you may even be able to skip the search and screening phases of those systematic
reviews, since you already know which articles to include. Especially in combination with a
decentralized approach to extraction, this means that scoping reviews can enable very efficient
mapping of the literature.

8

Part I

Planning

9

2 Introduction to Planning

2.1 Overview

Planning a systematic review works in the opposite order of conducting it. Specifically, when
planning, you and your research team have to achieve consensus on the following matters, in
this order:

1) The goals and/or research question(s);

2) As a function of this, the entities you will extract (see the Planning: Extraction chapter,
Chapter 5 in this version of the book);

3) As a function of these entities and the goal/research questions, the exclusion criteria you
will use during screening;

4) As a function of the goal/research questions and the exclusion criteria, your search
strategy, which includes:

1) the conceptual form of the query you will use;

2) which database(s) and interface(s) you will use;

3) the conceptual query translated to each database/interface combination;

4) additional strategies, e.g. forward and backward citation searches;

This will determine the scope of your review. Although these steps depend on the previous
steps’ output, in practice, this process is often nonlinear and iterative. For example, you
often test draft queries in your interface/database combinations to see how many hits you
obtain, potentially deciding to adjust your exclusion criteria or even your goals or research
questions depending on what you find to ensure that the systematic review stays within the
scope determined by your resources (time, funding).

10

https://sysrevving.com/planning-extraction.html

2.2 Be explicit for redundancy, transparency, and future you

To err is human, and therefore, in scientific endeavors, it is best to never count on a single
human not erring. The solution to this is two-fold. First, don’t let humans perform tasks
that computers can perform; and second, implement redundancy. That means that for tasks
that have to be performed by humans, always have at least two people perform every task
independently and check for consistency in the results.

If you can afford such redundancy, there is a clear penalty for sloppy planning. If your def-
initions, descriptions, and instructions leave room for interpretation, the laws of probability
decree that that room will inevitably be taken sooner or later. This will manifest as hetero-
geneous results that will be labor-intensive to reconcile. In a non-trivial proportion of cases,
such divergent results may prove almost impossible to reconcile, as they may bring to light
fundamental problems with the tasks, definitions, and procedures you specified during your
planning.

However, in many cases, full redundancy is not practically attainable. For example, when a
systematic review is conducted in the context of a bachelor’s thesis, a master’s thesis, or a
PhD. thesis, only one screener and one extractor may be available. Similarly, in many projects,
having multiple independent synthesists is not feasible. In such cases, sloppy planning and
sloppy documentation of the planning is not penalized as explicitly and as acutely.

Therefore, in such cases, it is particularly important to pay special attention to clearly docu-
menting your plans, definitions, decisions, and their justifications. In addition, it is important
to not forego developing instructions for each task as if you were not the only person who will
conduct them. Although redundancy may not require this, there are two reasons to do this
nonetheless.

First, as the transition towards open science has shown, there is much to gain from exercising
transparency in science, both epistemologically and operationally. Epistemological benefits
include error-detection, easy and accurate identification of risks of bias, and availability of
process information for meta-scientific interrogation. Operational benefits include facilitating
learning from other researchers and prompting more elaboration through the awareness that
one works in public.

Second, systematic reviews tend to be both very valuable and take a lot of time, and the
process tends to be very similar every time. These characteristics mean that you will likely
come back to your earlier documentation and plans, either to remember what exactly you did
and why, or because you want to adapt and re-use some elements of your process. You will
save Future You a lot of time and effort by exercising some minimal hygiene throughout your
project in terms of data management and clear documentation, including instructions that
may seen unneccessary at the time.

11

3 Research Questions

The research questions guide much of the planning (and so, execution) of a systematic review.
I say “much” because when you’re planning a systematic review and it’s not necessarily a one-
shot endeavour, you will often want to anticipate as many future needs and wishes as possible,
which extends your planning beyond your current research questions.

Still, any systematic review will be conducted with a specific initial goal in mind, and because
that goal will often be obtaining one or more answers, the questions to be answered are a
useful way to structure the planning.

These research questions will always contain one or more concepts. Each of these concepts will
relate to one or more entities to extract (see below). Once you have decided on your research
question, therefore, you can decide on the entities to extract.

However, in practice this process is nonlinear and iterative. Any given research question (or
more accurately, any given set of entities to extract) implicitly determines the scope of the
review, because the exclusion criteria are based on the research questions and the entities to
extract, and the search strategy (e.g. the query) is based on the research questions, the entities
to extract, and the exclusion criteria. As such, there is always some correspondence between
the research question and the number of sources that your search strategy will yield (and that
will have to be screened).

Therefore, you will usually develop all of these in parallel. For example, it is common to test
different queries until the number of hits is feasible given the available resources. Depending
on your screening capacity, you may be forced to revise and limit the scope of the research
question(s). Similarly, if your query yields very few hits, you may want or need to broaden it
(and therefore, broaden your research question(s)) to eventually obtain worthwhile results.

3.1 Systematic Reviews

3.2 Scoping Reviews

Research questions in scoping reviews ask what researchers did. They can concern anything
from whether different geographical regions prioritize different topics, whether sample sizes
increased or decreased over time, which definitions researchers use, and which measurement
instruments researchers use, via things like which study designs are used to answer which types

12

https://r-packages.gitlab.io/metabefor/articles/definitions.html

of questions and how paradigms change over time to whether shifts occurred in researchers’
underlying philosophy of science or epistemological perspectives.

13

4 Planning the Synthesis

Where in primary research, the term used for the process by which one arrives at answers to
a research question based on the collected data, in a systematic review, this process is called
synthesis. This nicely captures the aim to combine information from multiple sources to yield
a (hopefully coherent) overview.

Synthesis of systematic review results shares many characteristics with analyses in primary
research. In both cases, the process consists of dozens to thousands of subjective decisions;
in both cases, the process can be challenging and complicated; and in both cases, the way
the process is challenging and complicated depends on the type of data being processed. For
systematic reviews, syntheses tends to be easier as sources are more similar.

For example, a relatively simple synthesis could be a meta-analysis of studies that all have the
same design and used the same measures for the same variables, for example when aggregating
randomized controlled trials for a specific COVID-19 vaccination. In such scenarios the studies
often share the same ontological and epistemological perspectives, and a single effect size
estimate can often be extracted from each source, all in the same metric. In addition, variation
in extracted effect sizes most likely reflects sampling variability and contextual factors. Both
can be statistically modeled (assuming those contextual factors were extracted).

An example of a relatively complicated synthesis is a systematic review that provides an
integrative overview of a topic over multiple study types, for example everything that is known
about why people

14

5 Planning the Extraction

5.1 Introduction to extraction

The extraction is the stage where the “data” are extracted from the identified sources (see
Chapter 19). This means that the information from or about the included sources has to be
stored in an extraction script file.

In a systematic review, the extraction and synthesis stages are the hardest (unless a meta-
analysis is possible, in which case the extraction stage is the hardest). This is because the
information you want to extract will often be ambiguous, and sometimes it will not be available
at all. This ubiquitous ambiguity means that the task of extracting information is typically
not a matter of copying information over: instead it’s more like playing detective.

5.2 Entities

Planning the extraction is also the hardest part of planning a systematic review. Planning the
extraction means specifying the R extraction script, which requires specifying the entities to
extract, how they are hierarchically organized, and which value templates each entity uses.

An entity is anything that has to be extracted from a source, such as the year something was
published, its authors, a definition that was used in a source, a theory that was studied, a study
design, a sample size, a measurement instrument, the literal text of measurement instrument
items, expressions from interview participants, effect sizes, or things like the number or figures,
tables or words in a source.

During the planning phase, you decide which entities you want to extract and how. A garden-
variety entity represents one type of thing you want to extract from your included sources.
You will define them in the Rxs specification, a spreadsheet (see below for details).

5.2.1 Identifiers and titles

For every entity, you will choose an identifier, a title, and a description. The identifier is a
unique machine-readable name for your entity. This will allow you to easily select all extracted
data for a given entity during the synthesis phase. Identifiers can only contain lower- and
uppercase Latin letters, Arabic numerals, and underscores, and must always start with a

15

letter. 1 Titles are the human-readable equivalent, so basically just the name of the entity,
without any constraints as to which characters you’re allowed to use, but short.

5.2.2 Descriptions and extraction instructions

Descriptions are longer, and should contain at least two, and preferably three elements. First,
the description should describe and define the entity. Since what you include here will be all
that extractors, other researchers and interested parties, and Future You will have to go on, it
pays to make an effort to be as explicit as possible.

Second, the description should contain explicit extraction instructions for the extractors —
even if you yourself are going to be the only extractor (see “Be explicit for redundancy, trans-
parency, and future you”, Section 2.2 in this version of the book).

Third, ideally, the description should explicitly list one or more edge cases. Edge cases are
examples of something that a source might contain where it is not obvious how it should be
extracted correctly. By listing these and explicitly describing why that example should be
extracted the way you specify, you help extractors (including Future You) understand better
how you delineate your entity definition.

5.2.3 Values to be extracted

To specify which types of values can be extracted for each entity, value templates can be spec-
ified (see the Value Templates section below). For each entity, the valid values, default value,
and examples specified in the value template can be overridden in the entity specification.

5.2.4 Hierarchical structure and container entities

Because the number of entities extracted from the sources in a systematic review can become
quite large, and are often clustered together, entities have a hierarchical data structure. This
means they form a tree: each source is a root that can have leafs and/or branches attached.
In data tree terminology, terms from two vocabularies are mixed: tree terms, such as root,
branch, and leaf; and family terms, such as parent, child, descendants, and ancestors.

To familiarize yourself with these terms, consider the tree in Figure 5.1.

1If you’re already familiar with regular expression, the regular expression is [a-zA-Z][a-zA-Z0-9_]*. If you’re
not already familiar with regular expressions: they’re an extremely powerful tool to describe, search for, and
replace text fragments, well worth at least a brief acquaintance.

16

https://sysrevving.com/planning-intro.html#sec-planning-intro-explicity
https://sysrevving.com/planning-intro.html#sec-planning-intro-explicity

source

general methods results

publicationYear sourceAuthors sourceTitle sample method variables associations

sampleSize samplingStrategy variable

variableIdentifier measurementLevel

association

associationIdentifier varId1 varId2 r t

Figure 5.1: An example data tree with entities.

In this tree, the source itself is the root where all entities are attached. The three container
entities attached to the root are general, methods, and results. These container entities are
used to organise other entities: nothing is extracted for those contained entities themselves,
they just function to organise and represent their children. The children of the general
container entity (publicationYear, authors, and title) are themselves leaves: they have no
further descendants.

Of the entities specified as children of the methods container entity, the method entity doesn’t
have descendants either: that entity is also a leaf. The sample entity does have two children
(i.e. is a branch), sampleSize and samplingStrategy, each leaves themselves (i.e. without
children). The variables entity has one child that is itself a branch (variable), which has
two children: variableIdentifier and measurementLevel (both leafs).

Finally, the results container entity contains one container entity called associations, which
contains another container entity (i.e. a branch) called association, which contains three
regular entities (i.e. leafs): varId, r, and t.

The position of an entity or container entity in the Rxs tree is specified by its parent, where
the entity identifier of the parent container entity is specified.

5.2.5 Repeating entities

Sometimes, an entity, entity container, or clustering entity (see the next section) can potentially
be extracted multiple times. For example, a source may report on multiple samples or may
report multiple effect sizes. Therefore, some entities are repeating entities, which means the
extraction script will be set up such that the corresponding lines can be copy-pasted multiple
times. Normally, only clustering entities will be repeating. This will be explained in more
detail in the next section.

17

5.2.6 Clustering entities (‘lists’)

In addition to container entities, that themselves contain no extracted data but are used to
organize other entities, there are clustering entities. You can consider clustering entities as
a special type of container entity that only contains leaf entities that are closely related to
each other. In the extraction script template, these clustered entities (i.e. the leaf entities in a
clustering entity) are placed on successive lines, with their titles, descriptions, value template
descriptions, and examples all concatenated in one line after the bit where the entity itself is
extracted.

There are two benefits to using clustering entities. First, they are more efficient during extrac-
tion, especially if the clustering entity is a repeating entity (see below). Second, metabefor
has functions to supplement a clustering entity with entities from elsewhere in the extraction
tree.

To illustrate this, again look at Figure @ref(fig:planning0extraction-treeIllustration). In
this Rxs tree, there are two repeating clustering entities: variable and association.
The variable clustering entity contains two clustered entities: variableIdentifier
(a unique identifier for each extracted variable) and measurementLevel (the measure-
ment level of this variable). The association clustering entity contains five clustered
entities: associationIdentifier (a unique identifier for each extracted association),
varId1 (the identifier of the first variable, referring to a variable clustering entity by its
variableIdentifier), varId2 (the identifier of the second variable, also referring to a
variable clustering entity by its variableIdentifier), r (a Pearson correlation coefficient),
and t (a Student t value).

Both the variable and association clustering entities are repeating entities. This means that
they can each be extracted multiple times by copy-pasting the relevant lines in the extraction
script. Because each clustering entity has a unique identifier, they can be referred to, and each
association clustering entity refers to two variable clustering entities.

Now, imagine a systematic review on gym membership, exercise, diet, and BMI. The extractor
might encounter a source where they extract four effect sizes in four association clustering
entities:

• the Pearson correlation between height and weight;
• the Pearson correlation between weight and daily energy ingestion;
• the Pearson correlation between weight and daily exercise; and
• the Student t value for the association between gym membership and daily exercise).

The extractor also specifies the measurement level for each variable in five variable clustering
entities.

18

During synthesis, metabefor allows supplementing the association clustering entities with
the information specified in the variable clustering entities using the unique identifiers speci-
fied in varId and varId2 and then looking for the corresponding clustering entities with that
identifier in their variableIdentifier entity.

This is a trivially simple example, but this functionality is very powerful to extract efficiently
and with high fidelity, while retaining flexibility and easily recombining the extracted entities
during the synthesis stage to ultimately obtain data frames that lend themselves well to the
intended synthesis.

5.3 Value Templates

Value templates are an efficient method to define a type of data to be extracted. The example
metabefor Rxs specifications contain a number of common value templates:

• numeric: Any valid number
• numeric.multi: A vector of valid numbers
• integer: Any valid whole number
• integer.multi: A vector of integers (i.e. one or more whole numbers)
• integer.length4.multi: A numeric vector of years
• string: A single character value
• string.multi: A character vector (i.e. one or more strings)
• countrycode: A character vector of the ISO 3166-1 alpha-2 country code(s)
• categorical: A string that has to exactly match one of the values specified in the

“values” column of the Coding sheet
• generalPresence: Whether the thing being coded was present or not.
• string.mandatory: A single character value that cannot be omitted
• string.entityRef.mandatory: A string that specifies another entity and which MUST

be provided
• string.entityRef.optional: A string that specifies another entity (can be missing,

i.e. NA)
• string.fieldRef.optional: A string that specifies another field in another entity (can

be missing, i.e. NA).
• matrix.crosstab: A table with frequencies; variable 1 in columns, variable 2 in rows;

always work from absence/negative/less (left, top) to presence/positive/more (right, bot-
tom)

• string.identifier: A single character value that is used as an identifier and so is
always mandatory and can only contain a-z, A-Z, 0-9, and underscores, and must start
with a letter.

Each value template specifies a unique identifier, a description, optionally the valid values that
can be extracted, a default value to insert into the extraction script template, one or more

19

examples, an R expression to validate the extracted value (which implements the descriptions
in the list above), and an error to show if that validation fails.

5.3.1 Validation of extracted values

The R expression that is specified as validation has to be a logical expression that evalu-
ates to a single TRUE or FALSE value. In this logical expression, you can use the placeholder
VALUE, which will be replaced by the value that the extractor extracted, and the placeholder
<<validValues>>, which will be replaced by whatever you specified in the validValues col-
umn of the vlaue templates worksheet. Note that if you want to specify multiple values in the
validValues column, you have to separate them with character sequence || (so, space, pipe,
pipe, space).

You can compare the VALUE the user supplied to other values and test its contents using a
logical expression where you can use the following operators:

• ||: a version of the “or” operator that takes two single values
• &&: a version of the “and” operator that takes two single values
• |: a version of the “or” operator that takes two (equal-length) vectors
• &: a version of the “and” operator that takes two (equal-length) vectors
• !: the “not” operator, placed in front of the expression ot negate

In addition, it is highly recommended to use parentheses ((and)) to explicitly specify the
order in which you want the “sub-expressions” that together form the logical expression to be
evaluated.

Finally, you can use R functions. Common functions you may want to use are the following:

• is.na(): tests for every element in the value, vector, or list you pass, whether it’s missing
(“NA”) or not

• is.numeric(): tests for every element in the value, vector, or list you pass, whether it’s
a numeric value or vector

• is.character(): tests for every element in the value, vector, or list you pass, whether
it’s a character value or vector

• length(): returns the length of the vector (or 1 if it’s a single value)
• all(): returns whether all values you passed are TRUE
• any(): returns whether at least one of the values you passed is TRUE
• nchar(): returns the number of characters in (each value of) VALUE

5.4 Details of the Rxs specification

The entities are specified in a spreadsheet called an Rxs specification. Rxs stands for R Extrac-
tion Script, and they are the machine-readable files that data from sources are extracted into.

20

They are in fact R Markdown files that can be rendered as-is, but that can also be imported
using metabefor. These files are created by metabefor based on the Rxs specification.

An very minimal example of such as spreadsheet is available at https://docs.google.com/spreadsheets/d/1Ty38BS7MVXOgC-
GJ6zzr7E3rC_vQNOMKe-uCvIuHs3c. A more extensive example is available at
https://docs.google.com/spreadsheets/d/13MUf8qL4Zmc5V6AOvjO1GWeFCl4IaaSl2zUT-
Kk9tQc. See the @ref(example-projects) chapter in the Appendix for a list of example
projects.

A spreadsheet holding an Rxs specification has at least the following worksheets:

• entities: The specifications of the entities to be extracted in the systematic review.
• valueTemplates: The value template specifications: an efficient way to specify ‘data

types’ for entities.
• definitions: Definitions of concepts used in the systematic review.
• instructions: Instructions for the extractors.
• texts: Texts to override metabefor’s default texts.

These will now briefly be described.

5.4.1 The entities worksheet

The entities worksheet has the following columns:

• title: A short human-readable label for the entity (basically its name).
• description: A longer human-readable description of the entity. Together with the

value template descriptioin, this will form the instruction for the extractors, so make
sure to clearly describe what they should look for in the sources.

• identifier: A machine-readable identifier for this entity. This may only contain lower
and upper case Latin letters (a-z and A-Z), underscores (_), and Arabic digits (0-9),
and must start with a letter. This is used to refer to extracted entities in the results, or
when cross-referencing entities (e.g. in the parents column).

• valueTemplate: The identifier of the valueTemplate to use (see the valueTemplates
worksheet).

• validValues: Overrides the validValues specified in the specified ‘valueTemplate.
• default: Overrides the default value specified in the specified ‘valueTemplate.
• examples: Overrides the examples specified in the specified valueTemplate.
• parent: The entity’s parent entity: in the hierarchical tree of extracted entities, the

parent is the entity that this entity will fall under. For example, in the Rxs specification
for the the example tree shown above, the entities samplingStrategy and sampleSize
each list sample in the parent column.

21

• list: If list is set to TRUE, that designates this entity as a clustering entity. That means
that the entities it contains are clustered entities that are presented in the extraction
script in a list(). This allows for more efficient extraction of the child entities. However,
is also means that in the tree of extracted entities, these child entities (i.e. the clustered
entities) cannot themselves have child entities. In other words, those child entities are
all leafs on the tree.

• repeating: Set repeating to TRUE for entities that can be extracted multiple times.
This is useful for, for example, effect sizes or other statistics, which can be extracted
multiple times for a given source, but always have the same specifications.

These columns are also included, but contain functionality that is both quite advanced /
abstract and not yet fully implemented in metabefor:

• collapsing: To be added.
• recurring: To be added.
• recursing: Set recurring to TRUE for entities that can recurse: that can contain them-

selves.
• identifying: Set to TRUE if this is entity if an identifier.
• entityRef: It is often useful to specify that extracted information relates to a specific

entity (usually an entity container). In such cases, this column can be used to specify
which entity is referred to. This is then used during validation to verify whether in the
tree object, the value specified for this entity occurs as one of the values specified for the
entityRef entities. For example, when conducting a meta-analysis, it is typically useful
to extract the variables measured in a study as well as estimates for associations between
those variables. Using entityRef entities, it is possible to extract the measurement
instrument used for the relevant variables only once, and then refer back to those entities
using the entityRef entity.

• fieldRef: [this is advanced functionality that still has to be implemented in metabefor
] Sometimes, extracted information does not relate to another entity, but to one specific
value for an entity specified in the entityRef. The fieldRef field allows you to specify
the identifier of the entity within the entity referenced in the entityRef entity to which
the parent entity pertains.

• owner: This entity’s owner - specifying an owner signifies that all entities with that
identifier must contain at least one entity with the current identifier.

5.4.2 The valueTemplates worksheet

• identifier: The unique identifier of this value template, used in the entities work-
sheet to specify that this value template should be applied to an entity. This must be a
machine-readable identifier, and so may only contain lower and upper case Latin letters
(a-z and A-Z), underscores (_), and Arabic digits (0-9), and must start with a letter.

22

• description: A description of this type of value. This will be shown in the Rxs template
for every entity that this value template will be applied to. Specifically, extractors will
see this description printed below those entities.

• validValues: Optionally, a list of valid values. Each value must be separated by double
pipes (||). For example: "Unknown" || "Present" || "Absent" means that one or
more of those three strings must be extracted.

• default: The default value inserted in the Rxs template.
• examples: Examples of extracted values.
• validation: An R expression to validate the extracted entity.
• error: An error message to show if the validation fails.

5.4.3 The definitions worksheet

Here, you can specify definitions that are important in your project. They will be inlcuded in
the extractor instructions, together with the contents of the instructions worksheet. There
are two columns:

• term: A term.
• definitions: The corresponding definition.

5.4.4 The instructions worksheet

Here, you can specify instructions for your coders.There are two columns:

• heading: A heading, which will be included as a heading in the instructions.
• definitions: The instructions that should be displayed below that heading.

5.4.5 The texts worksheet

This functionality has not been implemented yet, but it will allow overriding the default texts
produced by metabefor.

• textIdentifier: A unique identifier for the text fragment.
• content: The text fragment that should be used.

5.5 Post-hoc entity specification: Txs specifications

Tabulated Extraction Sheet specifications

23

6 The Categorization-Coding Continuum

6.1 Categorization

For some entities, the potential values an extracted entity can take are knowable in advance in
a given systematic review context. For example, when reviewing primary studies in humans or
other animals, the sample size must be a positive integer (e.g. 1, 2, 3, …); and publication year
will usually have to be a positive integer, often of four digits. In other cases, it is clear that
free text will be extracted, for example, when author names or source titles are extracted.

For many entities, however, it is less obvious how to operationalize them. When something
is extracted as free text, often as many unique values will be extracted as there are sources.
This means that synthesis (i.e., “analysis”, see below) first requires transformation of those
values. A list of raw free text values cannot be synthesized: the strings of characters have no
encoded meaning, and cannot be collapsed or summarized. Nothing can be calculated from a
list of free text values; and if that list is used in a table, that table will have as many rows
or columns as the list of free text values has different values. Especially in scoping reviews,
where including hundreds of sources can be quite common, this often isn’t feasible.

In many cases, this problem can be avoided by having extracters categorize that information
during extraction. For example, imagine a scoping review into qualitative research practices
in a given field. One of the entities that will be extracted is how the researchers coded the
data. In this case, an infinite number of coding approaches can be used. Many textbooks on
qualitative research use some categorizations to organize these. For example, coding can be
categorized as “inductive” versus “deductive” or as “open” versus “axial”. Like any categoriza-
tion, these simplify reality, making it easier to deal with for humans. If this simplification is
not problematic given the scoping reviewers’ research question(s), they can choose to adopt
one of those categorizations.

In that case, they would decide which categories to use (e.g. inductive coding and deductive
coding, or two symbols representing these two categories, such as 1 and 2) and specify clear
coding instructions for each (often with special attention to edge cases). After extraction,
instead of having one or several sentences of free text extracted for each source (where the
original authors describe their coding approach), they would then have a list with only possible
two values (e.g. inductive coding and deductive coding, or 1 and 2). This lends itself to
easy synthesis: the percentage of sources using inductive coding could easily be obtained, and
it would be possible to answer questions such as whether that percentage seems stable over
time, or differs between subdomains, or by geographical area.

24

6.2 Ambiguity

However, the extractors would also encounter sources where the authors used both types of
coding - and they would encounter sources where a coding approach would be used that could
arguably belong in either (or neither) category. There are two strategies to try and prevent
such problems.

The first is developing very, very comprehensive coding instructions. If the scoping reviewers
have a clear idea of all potential coding approaches, discussing all edge cases extensively in
the coding instructions can ensure unequivocal (and correct) categorizations of most potential
descriptions extractors can encounter in the sources. For example, the coding instructions
can instruct extractors to categorize all sources using both inductive and deductive coding
as “inductive” (or “deductive”, depending on what makes sense given the scoping review’s
goals).

The second is putting a lot of thought into the categories that are used for each entity. For
example, instead of using two categories, the scoping reviewers could add a third category
inductive and deductive coding. They could also split the entity into two dichotomous
entities, having extractors extract whether inductive coding was used into one, and whether
deductive coding was used into another. By adding a third category unclear to each entity,
ambiguous cases could be easily spotted - however, at the cost of no longer knowing what
the extractor would guess if forced. That could be solved by adding more categories, for
example extracting the entity inductive coding into categories no, unlikely, likely, and
yes; or, alternatively, by adding a second entity that holds the extractor’s confidence in the
categorization.

6.3 The cost of categorization

Each of these solutions to the problems caused by reality (including researchers’ decisions as
extracted in scoping reviews) usually not being neatly organized into categories entail some
costs. The more entities that are used to store the information extracted from the sources, and
the more categories that are used for each entity, the less information is lost during extraction
– but the more time and effort the extraction costs.

In addition, any categorization by definition means that what can be learned from the system-
atic review is limited to the “potential answer space” formed by what the systematic reviewers
knew a priori. If a research question is “which coding approaches are used”, and the entities
that systematic reviewers extract into are inductive coding and deductive coding (both
with categories no, unlikely, likely, and yes), then the synthesis can never result in con-
clusions about the proportion of sources where the researchers reported they used guinnea
pigs, neural networks, or magic crystals for coding, even if a sizeable proportion of the sources

25

reports those approaches. Each of these three types of coding approaches will instead be cat-
egorized as either inductive coding or deductive coding (or potentially both) – if the coding
instructions are of sufficient quality, they will be categorized unequivocally and consistently,
but still, a lot of information will be lost.

This can be problematic depending on the research questions. Often, what the systematic
reviewers do not see coming a priori can be the most interesting. When the nature or scope of
the “potential answer space” is not the thing of interest (i.e., the researchers are interested in
where the set of included sources falls in that space), the costs of categorization can be zero
or low. However, when it is not clear in advance how that space looks, researchers may not
be able to afford categorization at extraction time. In that case, coding can happen after the
extraction stage.

6.4 Coding after extraction

When coding after extraction, during extraction the only decision the extractors face is which
fragments to extract. They don’t need to interpret anything beyond identifying which part(s)
of the source contain(s) the relevant information, which decreases the probability of errors.
That interpretation then comes after.

The extracted original raw text fragments can then be exported to .rock files that can be
coded using the Reproducible Open Coding Kit (ROCK) standard. The coded files can then
be imported again and merged into the object holding all extracted data.

There are a lot of advantages to this approach. First, it makes the review much more trans-
parent. It’s easy for others to see which fragments were selected, and so what the results
were ultimately based on. Second, it lends itself well to rigorous quality control: having a file
with extracted fragments coded by multiple coders is relatively straightforward and ‘cheap’
(timewise), since the selection of the relevant fragments is often a large part of the task. Third,
it scales very well: the tasks of selecting the relevant fragments and the interpretation of those
fragments can be distributed between multiple extractors and coders. Fourth, closely related,
it enables a decentralized approach, where different groups can work on different parts of a
project. This means that it enables involving students or citizen scientists. Fifth, it provides
flexibility regarding effort distribution over time. If twenty entities are extracted as free raw
text fragments, reviewers can decide to start with coding the first five, which might be enough
to answer their main research questions. The other fragments can then be coded later on,
without delaying the rest of the project. Sixth, it allows relatively efficient re-coding using
different categories, which is for example very useful when conducting living reviews, where
insights about how to categorize can change over time.

There are also disadvantages to this approach. First, it costs more time to record raw text
fragments (which requires copy-pasting, usually from PDFs which also means it often also
requires some cleaning of the pasted text) than it takes to record a selection from a predefined

26

set of categories. Second, experienced extractors develop competences that make them more
efficient and more consistent over time. By cutting up the tasks and potentially distributing
those over more people, this training effect decreases.

6.5 The categorization-coding continuum

Whether a given entity is extracted as a raw free text fragment or categorized during extraction,
and if the latter, which categories are used and whether the entity is split up into multiple
entities has to be decided in the planning stage. Changing this decision once the extraction has
started is extremely expensive in terms of time, energy, and “error-prone-ness”, which means
that it is worthwhile to put a lot of thought into this decision for every entity.

In fact, together with which entities are extracted, how to extract each entity is the most
important decision taken when planning a systematic review. These decisions determine for a
large part how much time and energy the review will take, as well as how flexible the compiled
database will be, how extensible the review will be, and whether the process is scalable and
lends itself to decentralization.

Whether an entity should be extracted as raw free text fragments that are then later coded,
or categorized during extraction, or any of the options in between (e.g. categorization into
one entity with a second entity to specify raw text fragments in case of a misfit with the
prespecified categories; or coding into predefined categories but using multiple entities and
many categories to lose as little information as possible), depends on a number of things. For
example, when few resources are available (e.g. time, people), extracting raw text fragments
and coding afterwards may not be feasible. If conversely, if the reviewers aren’t confident they
can specify a well-defined set of mutually exclusive categories with clear coding instructions,
they will have to extract raw text fragments and defer the category definition to the coding
stage.

In addition, in one-shot reviews, some of the benefits of extracting raw text fragments and
separating the categorization from the extraction dissappear, and the remaining benefits may
not outweigh the costs. Conversely, when conducting a living review, being able to code
extracted text fragments again at some point in the future using a different perspective, or
having different coders code the text fragments with different goals and instructions can be
useful.

In any case, given the importance of this decision, it is worthwhile to carefully document
for each entity what the justifications are for its chosen position on the categorization-coding
continuum. Later in the process, it is likely you will forget those, and you may even regret
your decision for one or more entities – so future you will be grateful for reminders of why that
position seemed like a good idea at the time.

27

7 Planning the Screening

[[Still have to develop this into a section]]

[[This test sentence is the first sentence written in R by Ivonne, and can be removed.]]

1) download all hits of the queries in the various databases (and through the various inter-
faces) as .bibtex (or .ris) files to your PC;

2) import these and deduplicate these (you can do this with a reference manager, or with the
metabefor functions, which of course is what I always do because it’s more transparent
and efficient, and easy to re-run if you slightly change a query)

3) write the merged file to disk and send it to all screeners;

4) make sure screeners can only see title, keywords, and abstracts, and are blinded from
authors, journal, and year etc;

5) let screeners indicate for each entry why it is excluded (based on a progressive list of
exclusion criteria, that is based on your extraction scripts), or, for entries they cannot
exclude, indicate inclusion;

6) if you have a lot of hits (thousands), usually you first screen based on title only, and only
in the second round, on abstract for those entries that could not be excluded based on
title;

7) after screening based on abstracts, acquire full-texts and screen those again

8) then you have your list of included sources

9) something is only excluded if all two/three/… screeners exclude it (the reason can be
different; but if one screener fails to exclude, it’s retained for the next step)

28

8 Planning the Search

8.1 Query Crafting

Running your query is the first operational step of your systematic review: it’s often one of
the first things you do after you publicly froze your preregistration. In that sense it’s kind
of exciting, but ironically normally the results you obtain will not be surprising, since you
repeatedly test your query while crafting it.

8.2 Queries as logical expressions

A query is a logical expression that specifies the conditions that must be met for bibliographic
records to be returned by the interfaces that you use to search the bibliographic databases
(see below). You first craft this query in a conceptual form, not worrying about the syntax
that you will have to use to specify your query in a way the different interfaces can parse.

The simplest queries typically bind together sets of synonyms using the logical conjunction
operator (often represented by AND, &, or &&). Each set of synonyms binds together various
terms using the logical disjunction operator (often represented by OR, |, or ||). For example,
imagine we’re doing a systematic review on the determinants of ecstasy use. In that case, a
simple query could be:

("determinant" OR "determinants" OR "correlate" OR "correlates") AND ("ecstasy" or "XTC" or "MDMA")

This query has two terms. We could label the first “determinants”, since it is intended to
capture all synonyms for “determinants” (it does so badly, since I wanted to keep this exam-
ple short; such lists of synonyms are normally much longer), and we could label the second
“ecstasy”, since its task is to match all records that contain a word for “ecstasy” (again, doing
so badly to enable a brief example).

Using these two logical operators, it’s also possible to build more complex queries. For example,
if we would know enough about substance use to realise that the determinants of trying out
(i.e. “initation” of ecstasy use) are different from what you’d find if you do a determinant study
into the determinants of “using ecstasy”, the second term would become more complex:

29

("determinant" OR "determinants" OR "correlate" OR "correlates") AND (("ecstasy" or "XTC" or "MDMA") AND (("using" OR "use") OR ("trying out" OR "initiating")))

The complexity of the query you end up with is often related to the complexity or “subtlety”
of your goal or research question. If you’re conducting a scoping review, where you aim to
map out the literature on a specific topic, you will generally have simpler queries then when
you have a specific narrow research question.

Query complexity is often also related to the richness of the literature. If the literature on
a topic is very extensive, the review may become unfeasible if you use a very simple, broad
query: you might obtain tens of thousands of hits without the resources to screen all of those.
Similarly, if you’re surveying a smaller literature, you can afford to have a less sophisticated
query. Since screening costs a lot of time, it usually pays off to spend a lot of time developing
your query so that you minimize the number of irrelevant hits.

8.3 Database fields

In addition to the terms themselves, you can specify the fields you want to search. For example,
you can search all text fields (the default in most interfaces if you don’t specify one or more
fields), or only the title field, or the title and the abstract and the keyword fields, et cetera.
Usually you will want to search the titles at the bare minimum; and unless you are confident of
relatively standardized vocabulary in a field, you’ll often want to add the abstract and keyword
fields. Including fields like journal name, authors, or affiliations usually doesn’t make sense,
so omitting explicitly specified field names is very rare.

Sometimes interfaces will allow you to specify multiple fields in a query, for example, indicating
that a search term (e.g. a set of synonyms) can occur in either the title or the abstract; but
often that’s not possible, and you have to duplicate parts of your query. This can cause queries
to grow exponentially, and this is one of the reasons why it is important to craft your query
on the conceptual level before starting the translation into the interface languages.

8.4 Wildcard characters

The query languages used by each interface have many advanced features that you can use to
build powerful queries, and it is worthwhile diving into those. In addition to logical and other
operators, another category of such features is wildcard characters. For example, the asterisk
(*) can often be used to signify “zero or more alphabetic characters”, and the question mark
(?) can often be used to signify “zero or one alphabetic characters”. This allows you to rewrite
this query fragment:

"behavior" OR "behaviors" OR "behavioral" OR "behaviour" OR "behaviours" OR "behavioural"

30

into this much shorter fragment:

"behavio?r*"

Because such operators differ per interface, it usually pays off to obtain a thorough under-
standing of the capabilities of each interface you will use before starting to craft your query
(or while doing so), since you will want to create a query that’s as powerful and versatile as
you can, but you will have to do this within the constraints of the query languages of the
interfaces you’ll use.

8.5 Team Consensus and Expert Consultation

It is important to achieve consensus with the team about the query before you finalize your
preregistration and then run your query “for real”. If you miss important keywords, that can
be a very expensive oversight to correct later on (depending on how smartly you designed your
screening procedure; see below). For this reason, it is common to involve experts outside the
research team to consult on the lists of synonyms and the logical structure of the query.

8.6 Databases versus Interfaces

Once you formulated your conceptual query, you can start translating it into the languages
that the interfaces of the database you will use can understand. This language is generally
specific to each interface. An interface is the application that performs the searches in the
bibliographic databases for you and allows you to export the results in whichever format you
want to use.

For example, PsycINFO is a bibliographic database maintained by the American Psychological
Association. The APA keeps track of new articles that appear and adds them to PsycInfo. This
database is accessible through various interfaces, and different institutions will have licenses
with different interface providers. PsycInfo, for example, can be accessed through Ebsco, Ovid,
and ProQuest. Ebsco, Ovid ad ProQuest use different interface languages, so the syntax and
operators you have to use to formulate your query will be different.

Those interfaces are often (but not always) maintained by different organisations than those
maintaining the databases. Sometimes, a database maintainer offers its own interface: PubMed
is a good example of this. However, usually an interface is developed by a different organisation
that then provides access to multiple databases through their interface.

This has a number of benefits. One is that once you’re familiar with a given interface, you
can use those skills to search multiple databases. For example, your institutions may provide

31

access to PsycInfo, MedLine, and PsycArticles through an Ebsco interface. It also allows you
to search those databases simultaneously.

It also has a number of drawbacks. First, different interfaces work differently. The available
operators, the symbols representing those operators, and the syntax you have to use to build
a search query therefore differs per interface. If you want to search for a word, say “meta-
analysis” in an article title, sometimes you indicate this by saying "meta-analysis" IN TI,
and sometimes by saying TI("meta-analysis").

Second, the fields that exist differ per database. If you do search in multiple databases using
the same interface, it is very important to clearly keep in mind which fields you search.

As a consequence of this heterogeneity in interface languages, once you crafted your conceptual
query, you have to translate it into each interface’s language. Depending on how many fields
you want to search and on the features of each language, this can explode your query into
quite unwieldy strings of characters. Make sure to document both the conceptual query and
the final query you input into each database/interface combination.

Therefore, if you conduct a systematic review, it is important to always preregister both the
database(s) you plan to use and the interface(s) you plan to use. In addition, it is important
to document the search query you use in every interface/database combination.

8.7 “Smart” searching

When conducting a systematic review, make sure to disable all “smart” searching features
of the interface(s) you use. These features expand your query by including other synonyms.
However, of course, this “smart” searching algorithm is in fact dumb: it cannot understand
your goal(s) and/or research question(s), and so it will simply explode your query to find many
more hits, the vast majority of which will by irrelevant to your goals/questions, because after
all, you crafted a well-thought-through query.

A second problem of “smart” searching is that it is not replicable, since the algorithms im-
plemented by these interface maintainers are adjusted over time. Since you cannot encode a
“smart search version” parameter in your query specification, it’s not possible to solve this. As
a consequence, using “smart” searching in effect renders your systematic review unsystematic:
it can no longer be reproduced by other researchers — and worse, by yourself in the future.

Since systematic reviews typically take a year and often longer (see https://predicter.org/), you
will often have to repeat your query towards the end, screening the additional hits, extracting
entities from the additional inclusions, and re-running your analysis script. If your query
was applied using “smart” searching, the results in this repeated query exectution can change
unpredictably.

Therefore, never use “smart” searching in the final query you will use (and freeze in your
preregistration). You can use it while crafting your query, to find additional sources to include,

32

inspect the titles and abtracts for search terms you may have missed (people use the weirdest
synonyms at times), and improve your conceptual query accordingly.

8.8 Query validation

Usually, you’ll already have a few sources (e.g. articles, book chapters, etc) that you know you
will be including in your systematic review. While testing and perfecting your query, you’ll
usually use these to check whether your query “works”: whether it finds the articles you know
it’s supposed to find. If it fails to find one or more, then check whether it’s supposed to find
it: all bibliographic databases have a limited scope, and so the source might simply not exist
in that database (easily checked by entering its title as a query). If it was supposed to be
included in the hits but wasn’t, then your query is missing one or more synonyms, so add
those.

A quick way to check whether a given source is included in your query is by combining it
with your query: basically create a “single use query” that combines the source’s title (or
DOI, or ISBN, or any other unique identifier for the source) with your query using the AND
operator.

8.9 Exporting query hits

Once you ran your queries, you will need to download the hits: i.e. the identified bibliographic
records. There is usually a set of formats available: a very common format that is generally
well-supported is RIS (a format developed by “Research Information Systems”), and another
good choice is BibTeX. Before deciding on the format, make sure you know how you want to
conduct your screening. Ideally, you will be able to easily repeat your query later, either when
you revise the manuscript to make sure your findings aren’t outdated; if you updated your
query because you discovered you made a mistake; or in the case of living reviews, when you
want to update the review.

33

9 (Pre)registrations

It is best practice to (pre)register systematic reviews. This has a number of benefits, one being
that others can find out that you’re doing a systematic reviews, facilitating collaboration and
potentially preventing double work. Conversely, before starting to plan a systematic review,
you will typically want to check existing preregistration registries to make sure nobody else
started the same review a year ago and is already almost done.

There is an extensive (pre)registration form for systematic reviews, the Inclusive Systematic
Review Registration Form, that is available in this Google Doc, in this MetArXiv preprint, and
in the preregr package. Using this form can be a useful help while planning your systematic
review.

34

https://docs.google.com/document/d/1BFrmEWGz9Zb_vssC5simJ6ohuid3z-LitL99WRxFnE4/edit?usp=sharing
https://doi.org/10.31222/osf.io/3nbea
https://r-packages.gitlab.io/preregr/articles/form_inclSysRev_v0_92.html

Part II

Execution

35

10 Executing the Search

10.1 Running your queries

10.2 Exporting query hits

Once you ran your queries, you will need to download the hits: i.e. the identified bibliographic
records. There is usually a set of formats available: a very common format that is generally
well-supported is RIS (a format developed by “Research Information Systems”), and another
good choice is BibTeX. Before deciding on the format, make sure you know how you want to
conduct your screening. Ideally, you will be able to easily repeat your query later, either when
you revise the manuscript to make sure your findings aren’t outdated; if you updated your
query because you discovered you made a mistake; or in the case of living reviews, when you
want to update the review.

10.3 Importing your search hits

10.4 Deduplicating your search hits

36

11 Executing the Screening

Screening is the process of evaluating every result of the search strategy and applying the
exclusion criteria.1

11.1 Prepare JabRef for screening

To prepare JabRef for screening, you need to mask a number of fields from the screeners,
specifically any fields that may contain information that might bias the screeners. Commonly
masked fields are authors, journal, and publication year. There are two places where screeners
may be exposed to this information: in the entry table (the overview of all bibliographic entries
in the database) and in the entry editor (where the screeners enter their screening decision).

You can change both settings in the JabRef preferences in the Options menu. To specify which
fields should be visible in the entry table, open the “Entry table” section of the preferences
dialog as shown in Figure 11.1. You can specify custom columns at the bottom of the overview.
In this example, we add custom field screener_id1_stage_1, which specifies that these deci-
sions are made by the screener with identifier id1 in screening stage 1 (often in stage 1, only
the titles are screened).

You can set the fields that screeners are exposed to in the “Custom editor tabs” section. Here,
you can make tabs for each screening stage. For example, you may want to include only the
title in the tab for stage 1, but also the abstract in the tab for stage 2. In additon, you’ll
want to include the field with the decisions for the relevant stage. For example, in if you
enter a row containing “Screening Stage 1:title;duplicate;screener_id1_stage_1”,
that will add a tab called “Screening Stage 1”, showing the fields “title”, “duplicate”,
and “screener_id1_stage_1”. If you add a second row containing “Screening Stage
2:title;abstract;duplicate;screener_id1_stage_2”, that editor tab will also show the
abstract, and instead of entering the decision in field screener_id1_stage_1, it is entered
in field screener_id1_stage_2 (i.e. the decision for screener with identifier id in stage 2).
These rows have been entered in the example in Figure 11.2.

1Inclusion criteria can never override an exclusion criterion; therefore, inclusion of a soure is implicit in it not
being excluded during screening.

37

Figure 11.1: A screenshot of the JabRef preferences showing the ‘Entry table’ section.

Figure 11.2: A screenshot of the JabRef preferences showing the ‘Custom editor tabs’ section.

38

11.2 Screening in JabRef

To start screening, open the first bibliographic entry at the top of the entry table. Then, open
the editor tab corresponding to the stage you’re screening in.

Read fields; apply criteria; type in identifier for selected exclusion criterion or inclusion; open
next entry, etc.

� TODO: find shortcut key for moving through entries while staying in the ‘screening’ field of
the entry editor.

Options -> Key bindings -> default, alt-down and alt-up. But this seems to unfocus the
editor?

39

12 Executing the Extraction

12.1 Data management

12.2 Extracting entities

12.3 The structure of an Rxs file

Extraction occurs in Rxs files. Rxs files have the extension “.rxs.Rmd” (the last part “.Rmd”,
is the extension of R Markdown files; this is because Rxs files are also R Markdown files).
These are plain text files that you can edit with any text editor, such as Notepad, Notepad++,
TextEdit, or any other editor.

However, it is best to use RStudio, because then you can easily validate the values you extracted
while you still have everything fresh in your mind.

12.3.1 The bits you can ignore

The Rxs file is structured in four sections. During extraction, only the second section matters:
you can (and should) ignore the other components. This second component starts on line 4,
with a comment that, by default, is the following:

<!--~~~-->
<!-- -->
<!-- Welcome to the R Extraction Script (.rxs.Rmd file) for this source! -->
<!-- -->
<!-- You can now start extracting. If you haven't yet studied the -->
<!-- extractor instructions, please do so first. If you're all set, good -->
<!-- luck! -->
<!-- -->
<!--~~~-->

The text in this box can be customized, so you might see something else instead. This second
section ends with a similar comment, that by default has the following text:

40

<!--~~~-->
<!-- -->
<!-- Well done! You are now done extracting this source. Great job!!! -->
<!-- -->
<!-- Now, please knit the R Extraction Script into an HTML file and -->
<!-- carefully check whether you entered everything correctly, since it -->
<!-- will cost much less time to correct any errors, now that you still -->
<!-- have this source in your mind, than later on when you'll have to -->
<!-- dive into it all over. -->
<!-- -->
<!--~~~-->

In between these two comments, you extract the values for the specified entities. Consequently,
you can ignore everything above the first comment and below the second comment.

12.3.2 The sourceId block

After the first comment, the first thing you have to specify is the unique source identifier
(the sourceId) for the source (e.g. an article, book, report, or other source of entities you will
extract) you are extracting.

The block for the source identifier looks like this:

##
START: uniqueSourceIdentifier
##
uniqueSourceIdentifier <-
##
###
SET UNIQUE SOURCE IDENTIFIER
###
A unique identifier used in this systematic review to refer to this
source
###
##

""

##
VALUE DESCRIPTION AND EXAMPLES
##
###

41

A unique identifier to use in this systematic review. For sources
with a DOI, this is the last part of the shortDOI as looked up
through https://shortdoi.org (the part after the "10/"). For sources
without a DOI (and so, without a shortDOI), this can be, for example,
the QURID (Quasi-Unique Record Identifier) that was designated during
the screening phase or which you can create with
`metabefor::qurid()`.
###
EXAMPLES:
###
"g5fj"
"qurid_7h4pksl6"
###
##
END: uniqueSourceIdentifier
##

As you see, there are a lot of hashes (or ‘pound signs’: the # symbol) to structure this block
visually.

We will now walk through this block and inspect the bits you need to pay attention to.

12.3.2.1 The block start marker

The block starts with the block start marker. This marker indicates that this is the start of
the block, which also specifies to which entity this block belongs:

START: uniqueSourceIdentifier

Here, you see that this entity has unique identifier “uniqueSourceIdentifier”, which seems
fitting for extracting the unique source identifiers.

12.3.2.2 The entity description sub-block

You can then ignore everything up until the sub-block with the entity’s label and description:

##
###
SET UNIQUE SOURCE IDENTIFIER
###
A unique identifier used in this systematic review to refer to this

42

source
###
##

The entity’s label is shown fully capitalized, followed by this entity’s description.

12.3.2.3 The block core: where you specify the extracted value

You then see a blank line, two indented double quotes, and another blank line:

""

This is the core of this block. It is where the entity value that you extract is specified (in
between the double quotes). The double quotes are the default value for this entity. In this
case, they represent an empty text string.

Note

Note that for computers, literal text strings always have to be in between either a pair of
double quotes ("like this") or a pair of single quotes ('like this'). Double quotes
usually make the most sense, because single quotes also serve other functions as apos-
trophes, so when you copy-paste a text, especially in Engelish, it’s likely to contain one
or more single quotes (e.g. in the word “it's”). If that text string is then delimited by
single quotes, you will cause an error, because as far as the computer knows, you unin-
tentionally stop the text string specification as soon as the first “'” in the text string is
encountered.

12.3.2.4 The value description sub-block

This position, where you specify the value for this entity, is followed by another sub-block:

##
VALUE DESCRIPTION AND EXAMPLES
##
###
A unique identifier to use in this systematic review. For sources
with a DOI, this is the last part of the shortDOI as looked up
through https://shortdoi.org (the part after the "10/"). For sources
without a DOI (and so, without a shortDOI), this can be, for example,

43

the QURID (Quasi-Unique Record Identifier) that was designated during
the screening phase or which you can create with
`metabefor::qurid()`.
###
EXAMPLES:
###
"g5fj"
"qurid_7h4pksl6"
###
##

This sub-block is marked “VALUE DESCRIPTION AND EXAMPLES”. Unlike the entity label and
description that we saw above, this sub-block tells you what kind of value has to be extracted
for this entity. So, whereas the first sub-block tells you what you need to specify here (e.g. what
to look for in the PDF of a source), this second sub-block tells you how you need to specify
what you extracted.

For example, some entities always have to be numbers (e.g., number of participants in a
study, or a correlation coefficient). Some numbers always have to be whole numbers, without
decimals (e.g., number of participants in a study), whereas others can contain decimals (e.g.,
a correlation coefficient). Sometimes you need to extract a text string. Sometimes you can
extract a so-called vector containing multiple text strings or numbers.

This description below the block core (where you specify the value you extracted for this
entity) tells you how to specify that value given what was decided during the planning of this
systematic review.

Note

You specify a vector using “c()”. For example, to extract to numbers, say 1 and 2, you
would specify “c(1, 2)”. This “c()” stands for “combine”, because it lets you combine
two or more values into one vector.

12.3.2.5 The block end marker

Finally, this block ends with the block end marker:

##
END: uniqueSourceIdentifier
##

These are basically the exact same lines as the block start marker, except that the entity
identifier for this block is now preceded by the word “END”, instead of by the word “START”.

44

This block end marker closes the block for this entity. In this case, this means the block for
the source identifier is done.

12.3.2.6 The value to specify here

The value you specify as “uniqueSourceIdentifier” is described in the value description
sub-block (the sub-block marked with “VALUE DESCRIPTION AND EXAMPLES”).

If you don’t have it yet, you’ll have to get the ShortDOI for this source, assuming the source
has a DOI. A ShortDOI is a unique brief unique identifier for any object that has a Digital
Object Identifier (i.e. a DOI). You can find the ShortDOI that corresponds to a given DOI at
https://shortdoi.org.

If you’re extracting a source that doesn’t have a DOI, normally, during screening every screened
entry will have received a QURID, a Quasi-Unique Record Identifier. You can then copy that
from the extraction spreadsheet, which is where you probably also have to copy-paste the
ShortDOI if that’s what extracted as the value for “uniqueSourceIdentifier” (refer to your
extraction instructions for the details).

When you’re done, the block core should look something like this:

"gqw5jr"

Note that you shouldn’t include the full ShortDOI, but instead omit the “10/” that it starts
with, so you only specify letters and digits.

12.3.3 The extractorId block

Then, you move on to the second block: the extractorId block. This extractor identifier is the
identifier for you, so that later on in the project, it’s still clear who extracted this source.

With your team, you will agree on identifiers for every extractor. Note that because the Rxs
files will be made public, these extractor identifiers will also become public, so you may want
to avoid using your name (on the other hand, this could also be a reason to deliberately use
your name: just think about what you would prefer).

The extractor identifier block looks like this:

##
START: extractorIdentifier
##
extractorIdentifier <-

45

https://shortdoi.org

##
###
SPECIFY YOUR EXTRACTOR IDENTIFIER
###
An identifier unique to every extractor
###
##

""

##
VALUE DESCRIPTION AND EXAMPLES
##
###
Identifiers can only consist of (lower or uppercase) Latin letters
[a-zA-Z], Arabic numerals [0-9], and underscores [_], and always have
to start with a letter.
###
EXAMPLES:
###
"extractor_1"
"Alex"
###
##
END: extractorIdentifier
##

You should now recognize the block start marker (the bit saying “START: extractorIdentifier”)
and the block end marker (the bit saying “END: extractorIdentifier”), as well as the
entity description sub-block (with label “SPECIFY YOUR EXTRACTOR IDENTIFIER” and
description “An identifier unique to every extractor”), the block core (the two double
quotes, “""”), and the value description sub-block (marked with “VALUE DESCRIPTION AND
EXAMPLES” and then proceeding to describe the constraints that an identifier must satisfy).

In this case, you type or copy-paste your personal extractor identifier in between the double
quotes in the block core. When you’re done, the block core should look something like this:

"myExtractorId"

46

12.3.4 Starting the actual extraction

Now that you’ve specified the relevant metadata for this extraction (because you haven’t
actually really extracted anything from the source yet…), you can start with the actual entities
to extract.

This part starts with the following lines:

##
START: source (ROOT)
##
rxsObject <- data.tree::Node$new('source');
currentEntity <- rxsObject;
##

You can ignore this: it just shows when the metadata (the source identifier and extractor
identifier) end and the real entities to extract start.

This start also has a corresponding block all the way at the bottom, just before the closing
comment:

##
END: source (ROOT)
##
class(rxsObject) <- c('rxs', 'rxsObject', class(rxsObject));
rxsObject$rxsMetadata <- list(rxsVersion='0.3.0', moduleId=NULL, id=uniqueSourceIdentifier, extractorId=extractorIdentifier);
##
##
##

In between these two blocks, you specify the values for the actual entities.

In principle, this process is relatively simple: you just scroll further down in the Rxs file, and
for every entity block, you specify in the block core whatever is explained for that entity and
the required value.

There are three more patterns that you’ll likely encounter, so let’s look at those first.

12.3.5 Entity containers

Entities are usually organized hierarchically (in a nested, tree-like structure). This is useful
because the point of using Rxs files is that it’s easy to combine extracted entities from multiple
files for the same source. This way, many people can easily collaborate on the same database
of machine-readable literature. You can even collaborate with “future you”: it’s easy to first

47

do a relatively superficial extraction pass, and later on specify more detailed entities in another
Rxs specification, extract those, and then combine all data in one database.

Entity containers are entities that are themselves not extractable, but that just exist to con-
tain other entities. Common entity containers are, for example, “General”, “Methods”, and
“Results”. Every time you encounter a container entity, the blocks of hashes indent by two
spaces.

This indenting starts immediately after the “source root” container has opened:

##
START: source (ROOT)
##
rxsObject <- data.tree::Node$new('source');
currentEntity <- rxsObject;
##

##
START: general
##
currentEntity <- currentEntity$AddChild('general');
##
###
GENERAL
###
General information about the article
###
##

In this example, the source root contains an entity container with entity identifier “general”.
This entity container has label “GENERAL” and description “General information about the
article”.

This entity container does not itself contain a corresponding value: instead, the Rxs file indents
again and an entity block (for the entity with identifier “qurid”) is shown:

##
START: qurid
##
currentEntity <- currentEntity$AddChild('qurid');
currentEntity[['value']] <-
##
###
QURID

48

###
Quasi-Unique Record Identifier. We will use this to
supplement this information with information from the
bibliographic databases (i.e. the screening database).
###
##

NA

##
####################################### VALUE DESCRIPTION AND EXAMPLES ###
##
###
A single character value
###
EXAMPLES:
###
"Example"
"Another example"
###
##
currentEntity[['validation']] <- expression(is.na(VALUE) || (is.character(VALUE) && length(VALUE) == 1));
currentEntity <- currentEntity$parent;
##
END: qurid
##

Further down, this entity container ends with a block end marker for this entity container
(which had “general” as entity identifier):

##
##
currentEntity <- currentEntity$parent;
##
END: general
##

12.3.6 Clustering entities

Often, you will want to extract multiple closely related values; or you want to extract something
that can have many different forms in a source, for example an effect size, where you need to

49

know what you’re extracting exactly. In those situations, you usually use “clustering entities”
or “list entities”.

The look like an entity where you don’t extract just one value, but multiple labelled values.
An example is shown below:

##
START: authors (REPEATING)
##
currentEntity <- currentEntity$AddChild('authors__1__');
currentEntity[['value']] <-
##
###
AUTHORS
###
Information about each author. Note that authors are repeating;
therefore, copy the list below multiple times if there are
multiple authors. Fill it out in the order of authorship.
###
##

list(authorId = NA, ### Author identifier: A unique identifier for this author in this source; most likely, this author's last name suffices. If multiple authors share a last name, number them (e.g. "smith1", "smith2", etc). [Examples: "example1"; "example_2"] [Value description: A single character value that must start with a letter and can only contain alphanumeric characters and underscores]
authorName = NA, ### Author name: The full name of this author. [Examples: "Example"; "Another example"] [Value description: A single character value]
authorORCID = NA, ### Author ORCID: The author's ORCID, if available or findable. If not, enter "nr". [Examples: "Example"; "Another example"] [Value description: A single character value]
authorAffiliation = NA); ### Author affiliation: The author's affiliations as a vector of strings. Each element should be one affiliation as listed on the article. Affiliations are ideally specified as RORs with the format "https://ror.org/019wvm592", where the part after the last slash is the ROR, but the first part of the URL is included, as well (search for an affiliation's ROR using https://ror.org/search. If no ROR can be found, type in the author institurion manually. If no author institution can be found, specify "nr". [Examples: c("First value", "Second value")] [Value description: A character vector (i.e. one or more strings)]

##
currentEntity[['validation']] <- list(`authorName` = expression(is.na(VALUE) || (is.character(VALUE) && length(VALUE) == 1)),

`authorORCID` = expression(is.na(VALUE) || (is.character(VALUE) && length(VALUE) == 1)),
`authorAffiliation` = expression(is.na(VALUE) || (is.character(VALUE))));

currentEntity$name <- metabefor::nodeName(currentEntity$value[[1]], "authors__1__");
currentEntity <- currentEntity$parent;
##
END: authors (REPEATING)
##

Let’s take a closer look at the block core in this entity block:

list(authorId = NA, ### Author identifier: A unique identifier for this author in this source; most likely, this author's last name suffices. If multiple authors share a last name, number them (e.g. "smith1", "smith2", etc). [Examples: "example1"; "example_2"] [Value description: A single character value that must start with a letter and can only contain alphanumeric characters and underscores]
authorName = NA, ### Author name: The full name of this author. [Examples: "Example"; "Another example"] [Value description: A single character value]
authorORCID = NA, ### Author ORCID: The author's ORCID, if available or findable. If not, enter "nr". [Examples: "Example"; "Another example"] [Value description: A single character value]
authorAffiliation = NA); ### Author affiliation: The author's affiliations as a vector of strings. Each element should be one affiliation as listed on the article. Affiliations are ideally specified as RORs with the format "https://ror.org/019wvm592", where the part after the last slash is the ROR, but the first part of the URL is included, as well (search for an affiliation's ROR using https://ror.org/search. If no ROR can be found, type in the author institurion manually. If no author institution can be found, specify "nr". [Examples: c("First value", "Second value")] [Value description: A character vector (i.e. one or more strings)]

50

We see that this block core consists of “list()”, in between those parentheses, there is a list
of three entity identifiers, each followed by an equals sign, “NA”, and then, after some spaces,
three hashes (###), the entity labels and description, and between square brackets (“[” and
“]”), examples and value descriptions.

The default values for these three entities is “NA”, which stands for “Not Applicable” (but you
can read it as “Not Extracted Yet”. When you extract these three entities, you still have to
supply the double quotes yourself. Once you extracted this clustering entity (or list entity),
this core block might look like this:

list(authorId = "viechtbauer", ### Author identifier: A unique identifier for this author in this source; most likely, this author's last name suffices. If multiple authors share a last name, number them (e.g. "smith1", "smith2", etc). [Examples: "example1"; "example_2"] [Value description: A single character value that must start with a letter and can only contain alphanumeric characters and underscores]
authorName = "Wolfgang Viechtbauer", ### Author name: The full name of this author. [Examples: "Example"; "Another example"] [Value description: A single character value]
authorORCID = "0000-0003-3463-4063", ### Author ORCID: The author's ORCID, if available or findable. If not, enter "nr". [Examples: "Example"; "Another example"] [Value description: A single character value]
authorAffiliation = "02jz4aj89"); ### Author affiliation: The author's affiliations as a vector of strings. Each element should be one affiliation as listed on the article. Affiliations are ideally specified as RORs with the format "https://ror.org/019wvm592", where the part after the last slash is the ROR, but the first part of the URL is included, as well (search for an affiliation's ROR using https://ror.org/search [Examples: c("First value", "Second value")] [Value description: A character vector (i.e. one or more strings)]

Clustering entities (or list entities, whatever you prefer to call them) are in the end just
convenient ways to more quickly extract closely related entities.

12.3.7 Repeating entities

The final common pattern you may encounter are repeating entities. Repeating entities are
used in situations where during the planning of the systematic review, you cannot be sure how
often a given entity will occur in a source. This can be the case, for example, with samples in a
study; or with authors; or with countries where data were collected; or many other entities.

The solution is relatively simple: you just copy-paste the entity block for a repeating entity.
If you look back, you saw that the entity block for entity “authors” was repeating. You can
see this by inspecting the block start marker and the block end marker.

The block start marker was:

##
START: authors (REPEATING)
##

The block end marker was:

##
END: authors (REPEATING)
##

The text “(repeating)” after the entity identifier tells you that this is a repeating entity.

51

Therefore, if this source has multiple authors (and most sources do), you copy the entire block
(including the block start marker and the block end marker) and you paste it right below (with
an empty line in between so you can easily spot where one entity block ends and the next one
starts.

If you forget to specify a valid identifier for the first entity in a repeating list entity,
{metabefor} will throw an error when you try to “knit” or “render” the Rxs file (using
CTRL-SHIFT-K).

For example, in this case it would say something like:

Quitting from lines 15-883 [rxs-extraction-chunk] (extractionScriptTemplate.rxs.Rmd)

Error in `metabefor::nodeName()`:
!
---------- metabefor error, please read carefully:

As an identifier for this entity (with temporary name
'authors__1__'), you specified `NA` (you probably forgot to
specify an identifier). Please change it to a valid entity
identifier!

Identifiers can only consist of (lower or uppercase) Latin
letters [a-zA-Z], Arabic numerals [0-9], and underscores
[_], and always have to start with a letter (as a regular
expression: ^[a-zA-Z][a-zA-Z0-9_]*$).

Backtrace:
1. metabefor::nodeName(currentEntity$value[[1]], "authors__1__")
Execution halted

This error shows up in the R console in RStudio, by default located in the bottom-left corner
of RStudio.

In this case, fix that identifier and try again.

You then specify the values for the second occurrence of this entity (in this case, for the second
author). This way, you are able to extract as many repetitions of this entity as the source may
contain.

If you’re done, hit CTRL-SHIFT-K again to “knit” or “render” the Rxs file. If everything goes
well, you should see something similar to what you see at https://metabefor.opens.science/
articles/validation.html.

52

https://metabefor.opens.science/articles/validation.html
https://metabefor.opens.science/articles/validation.html

In that case, check whether every entity validates succesfully. If so, check the table at the
bottom and make sure that all values as they show up there are correct. These are the values
as they are imported, so if they show up correctly here, you know that everything went well.
If not, correct whatever is not going well.

Congratulations - you extracted a source, made a little bit of the literature machine-readable,
and so contributed to scientific progress and a better world! ��

12.4 Validation of extracted entities

12.5 Contact with authors

53

13 Executing the Synthesis

This chapter still has to be written.

54

Part III

Operations

55

56

14 Ops for the search

57

15 Ops for the screening

15.1 First time: preparing a PC

To prepare your PC for screening, you need to do two things. First, download JabRef. Second,
configure JabRef.

15.1.1 Downloading and installing JabRef

To download JabRef, visit https://jabref.org and click the “Download” hyperlink or scroll
down to the Download section. Then download and install JabRef.

15.1.2 Configuring JabRef

Then, you need to configure JabRef. JabRef is not created for screeening; it is a reference
manager, like Zotero (or the ‘Closed Science’ alternatives such as EndNote, Mendeley, or
RefManager). However, it is exceptionally well suited for screening because of two reasons.
First, it is very customizable - so customizable that you can hide arbitrary information, making
it possible to mask screeners from, for example, authors, journal name or publication year.
Second, it uses the BibTeX file format and supports arbitrary field names. This makes it easy
to create dedicated fields where the screening decisions can be stored.

The configuration of JabRef consists of a number of actions to optimize JabRef for screening
comfort, efficiency, and integrity (i.e., masking the screeners from potentially biasing informa-
tion). The following screenshots were taken with JabRef version 5.91, so if you have another
version, your interface might look slightly different.

15.1.2.1 Configuring JabRef: opening the Preferences dialog

To open the options, click the Options menu and select the Preferences option as shown in
Figure 15.1.

1Specifically, JabRef 5.9–2023-01-08–76253f1a7 on Windows 11 10.0 amd64 and running Java 19.0.1 and
JavaFX 19+11.

58

https://jabref.org

Figure 15.1: The JabRef interface with the Options menu opened and the Preferences option
highlighted

59

15.1.2.2 Configuring JabRef: the Entry Table columns

Open the section for the Entry Table (see Figure 15.2). Below the table labelled “Columns”,
add two new fields. The first is labelled “qurid” (assuming that’s where the quasi-unique record
identifiers, the QURIDs, are stored; you create these with metabefor::generate_qurids()).
The second is the name of the field you will use for the screening. This field is set when
calling metabefor::write_screenerPackage(). If you yourself do not manage this part of
the project, the person(s) who do probably informed you of this field name (it will generally
contain the identifier for every screener, and may also contain an identifier for the screening
round, if screening occurs in multiple rounds, and finally it may contain an identifier for
the screening batch, if screening occurs in multiple batches). In Figure 15.2, this field is
“Screener_a_status”.

Once you added both of these fields, remove all other fields except for “Title”, so you remain
with only three fields (as shown in Figure 15.2).

Figure 15.2: The JabRef interface showing the Entry Table customization dialog

60

https://metabefor.opens.science/reference/generate_qurids.html
https://metabefor.opens.science/reference/write_screenerPackage.html

15.1.2.3 Configuring JabRef: the Entry Editor tab

Open the section for the Entry Table (see Figure 15.3). In the large text field, every line
represents one custom entry editor tab. Add a line with the name of the tab (e.g. “Screening”,
or, as in the example in Figure 15.3, “Screening Round 1”), immediately followed by a colon
(“:”), and then followed by the fields to show separated by semicolons (“;”). Specify the “title”
and “abstract” fields as well as the field you use to store the screening decisions. This is the
same field that you added to the Entry Table in the previous step (in our example in Figure 15.2
and here in ?@fig-ops-screening-entry-editorm this is “screener_a_status”).

Figure 15.3: The JabRef interface showing the Entry Editor Tabs dialog

15.1.2.4 Configuring JabRef: the Entry Preview tab

Open the section for the Entry Preview (see Figure 15.4). Select a preview style in the box
on the left and click the “Edit” tab. Then, copy-paste the following text:

61

<i>\bibtextype</i>\begin{qurid} (\qurid)\end{qurid}

\begin{title} \format[HTMLChars]{\title} \end{title}

\begin{abstract}

Abstract: \format[HTMLChars]{\abstract} \end{abstract}
<p></p>

This will ensure the entry preview also will not disclose information that the screeners should
be masked from (e.g. authors, journal, or publication year).

Instead of doing this, you can also achieve the same result by checking the checkbox for “Show
preview as a tab in entry editor” if you want. This will mean you no longer see the entry
preview to the right of the entry editor, but it’s in its own tab instead (see Figure 15.4).

Figure 15.4: The JabRef interface showing the Entry Preview customization dialog

15.1.2.5 Configuring JabRef: Shortcut keys

The last customization is setting the shortcut keys to easily cycle through the hits to screen.
You set these in the Key Bindings section (see Figure 15.5).

62

Expand the actions clustered in the “View” cluster and set the shortcut key you want for
“Entry editor, next entry” and “Entry editor, previous entry”. This will allow you to cycle
through the entries without having to use the mouse, which is considerably more efficient.

Figure 15.5: The JabRef interface showing the Key Bindings customization dialog

15.1.2.6 Configuring JabRef: separator dragging

Finally, drag the horizontal separator between the entry table and the entry editor up, so that
the entry editor becomes larger (see Figure 15.6).

15.2 In every screening session

Every time you do a screening session, you do the following.

1. Open JabRef.
2. In JabRef, open the .Bib file containing the hits.
3. Locate the entry where you want to start screening.
4. Double click it to open it. Potentially adjust the horizontal separator between the entry

table (showing all entries) and the entry editor so that you can read as much of the
abstract as possible.

63

Figure 15.6: Dragging and dropping a panel separator in JabRef

64

5. Apply the first exclusion criterion in the list of progressive exclusion criteria. If you
are confident, based on the title and the abstract, that the description of that exclusion
criterion applies to this hit (called “entry” in JabRef), type the corresponding code in
the screener field. If not, progress to the next exclusion criterion.

6. Apply the next exclusion criterion in the list of progressive exclusion criteria. If you
are confident, based on the title and the abstract, that the description of that exclusion
criterion applies to this hit (called “entry” in JabRef), type the corresponding code in
the screener field. If not, progress to the next exclusion criterion.

7. Repeat 6 until you have evaluated all exclusion criteria. If you cannot confidently say
that one of the exclusion criteria applies to this hit/entry/source, it is included (i.e. will
be retained in this phase). Enter the corresponding code into the screening field (e.g. “IN”
or “Incl” or “Included”).

8. Move to the next entry/hit/source by clicking it in the entry table at the top, or by using
the key combination you configured for “Entry editor, next entry” when preparing your
computer for screening.

9. If you have screened all entries/hits/sources (i.e. you have typed something in the screen-
ing field of all of them), you are done. Save the .bib file, close JabRef, and store the .bib
file in whichever location is listed in your project’s data management plan. Sometimes,
this is handled by somebody else - in that case, send the .bib file to them.

10. If you are not done, but taking a break, depending on what you agreed on, just save the
.bib file and JabRef and you’re done; or store the intermediate version in the location
in your project’s data management plan or send it to whoever handles the project’s data
management (as extra security/redundancy).

Well done - you’ve now created an open, machine readable list of your screening decisions that
can then be pooled with other batches, screening decisions from other screeners, or even other
projects.

65

16 Ops for the extraction

16.1 First time: preparing a PC

16.1.1 Installing the software

Whether you need to install any software for the extraction is mostly a matter of personal
preference. You will need to validate every extraction script to make sure you didn’t accidently
make a typo (e.g. forgot a quote) or extracted an entity in the wrong format.

One option is to do this using EVA (the Extraction Validation App), at https://opens.science/
apps/eva. In that case, the only software you need is an application to edit plain text files.
You can use whatever came with your operating system (e.g. Notepad in Windows, Text Edit
in MacOS, or GNOME Text Editor in Ubuntu). You can also install a more powerful text
editor, like Notepad++.

Alternatively, you can use RStudio and R. This has two advantages over the approach discussed
in the last paragraph. First, you have the benefit of RStudio’s syntax coloring. This is very
helpful to help you avoid accidentily omitting a quote or a parenthesis. In addition, you can
then directly validate your extraction by ‘knitting’ or ‘rendering’ the R Extraction Script in R.
If you want to use R and RStudio, you have to install these programs if they are not present
yet:

1. R: link to download R for Windows
2. RStudio link to download RStudio
3. Git link to download Git

For all three programs, you can accept the default options in the installation, but for Git,
you may want to select that you use Notepad (or Notepad++ if you have it) as the default
editor instead of Vim; and you may want to select “main” as default branch name instead of
“master”.

16.1.2 Installing the R packages

If you want to use R, you will also need to install a number of R packages. Once you installed
R and RStudio, start RStudio and then run these commands by copying them and pasting
them in the console (the bottom-left panel in RStudio):

66

https://opens.science/apps/eva
https://opens.science/apps/eva
https://notepad-plus-plus.org/
https://cloud.r-project.org/bin/windows/base/
https://posit.co/download/rstudio-desktop/
https://git-scm.com/

install.packages(c('remotes', 'here', 'markdown', 'commonmark'),
repos='http://cran.rstudio.com');

install.packages(c('ufs', 'ggplot2', 'DiagrammeR', 'DiagrammeRsvg'),
repos='http://cran.rstudio.com');

install.packages(c('yum', 'synthesisr', 'preregr', 'rock'),
repos='http://cran.rstudio.com');

ufs::quietGitLabUpdate("r-packages/metabefor", quiet = FALSE);

The last of these installs the {metabefor} package from its Git repository. Once {metabefor}
is on CRAN, you can install from there using install.packages().

16.1.3 Cloning the repository

Cloning means that you copy a Git repository to your local PC. This will download all files
in the project, along with the metadata needed to pull from and push to the server (e.g., a
GitLab or Codeberg server).

Figure 16.1: An overview of the NITRO repository in GitLab

In your browser, navigate to the URL of the Git repository (e.g., the URL of the NITRO
repository). There, click the “Clone” button.

In RStudio, klik links bovenin op “File” en dan “New Project”

Kies “Version Control” en dan “Git”

67

https://gitlab.com/sci-ops/narrated-illustration-of-a-transparent-review-outline
https://gitlab.com/sci-ops/narrated-illustration-of-a-transparent-review-outline

Figure 16.2: Cloning the NITRO repository in GitLab

68

Copy-paste de URL

Druk op Tab; hiermee gaat de cursor naar het volgende veld waar de directorynaam wordt
gespecificeerd. Als het goed is “autovult” hij die met de naam van het repository (in boven-
staand voorbeeld, “verlicht-scoping-review-1”)

Kies in het derde veld een plaats om die directory aan te maken en het project naartoe te
‘clonen’. Neem bij voorkeur een lokale directory, dus niet een subdirectory van een directory
van een cloud-dienst (e.g. OneDrive, DropBox, etc). Bij de OU zijn de Documenten directory
en de Desktop wel subdirectories van een synchronisatiedienst (met de OU server), dus als je
op een OU laptop zit, kies dan een directory op de D-drive. R opent nu je project.

16.2 For every source

1. Open the source you want to extract (e.g. a PDF of an article)
2. Look up the unique source identifier for this source. If the source has a DOI, then go to

https://shortdoi.org to produce the corresponding ShortDOI. If it doesn’t have a DOI,
the source identifier is the QURID, which you can get from the bibliographic database
you used for the screening.

3. Open RStudio or whichever text editor you use
4. Navigate to the directory holding the Rxs template (probably “extraction-Rxs-spec”)
5. Open this file.
6. Save it again with a new name, specifically a name constructed as follows:

1. Family name first author (with all characters other than Latin leters (a-z) removed)
2. An underscore (_)
3. sourceId (shortdoi or QURID)
4. An underscore (_)
5. Year of publication of the source
6. An underscore (_)
7. Extractor identifier (your identifier)
8. The extension (.rxs.Rmd)

7. An example filename is batty_2020_j58m_fm2.rxs.Rmd
8. Then, start completing the Rxs file: scroll through it from top to bottom, and insert the

value of every entity that you extract from the PDF
9. If you use Git, then once you’re done, you can push your Rxs file with:

git pull; git add . ; git commit -m "Commit boodschap" ; git push

69

https://shortdoi.org

16.3 Coding an extracted entity

When planning the extraction, you decided for each entity where on the coding-categorization
continuum you would extract it (see Chapter 6). The entities that you decided to extract
literally from the sources have to be coded.

This coding consists of attaching code identifiers to the entity values for a given entity. If you
code entities, the extracted values will almost always be literal text strings that were integrally
copied from the sources.

Examples of entities that you may choose to extract integrally and then code are the defi-
nitions authors use for a concept; or their description of their sampling procedure; or their
reasoning underlying a certain decision; or the way they phrase the research questions or their
conclusions.

During the coding, you look for patterns in these extracted texts, and you then attach codes to
make those patterns machine-readable (which will make it possible to combine this information
with the other information you extracted).

16.3.1 Your codebook

As you attach more codes, you develop your codebook. A codebook is a document that defines
each code. Typically, for each code, you document the following:

• A code identifier: Like entity identifiers, these can only consist of lower and up-
per case Latin letters (a-z and A-Z), Arabic digits (0-9), and underscores (_), and
must always start with a letter. Valid identifiers are socialNorms, broadConclusion,
conditionalStatement, sampling_purposive, and rhetoric_authorityArgument.

• A code label: This is a very short human-readable title for the code. Unlike identifiers,
labels are pretty much unconstrained, so valid labels are Social Norms, Drawing of
a Broad Conclusion, Statement conditional upon other statement, Sampling
strategy: purposive, and Rhetoric: use of authority argument.

• A code description: This is a longer description of the concept captures by the code.
This can be quite long, multiple paragraphs even, and will typically become more com-
prehensive as you code more data and so develop your codes further and further. The
code description determines when a code applies to a given bit of data, together with
the coding instruction.

• A coding instruction: This is an explicit instruction as to when this code should be
attached to a data fragment. Unlike the code description, which describes the concept
that the code captures (e.g. a psychological construct, or a procedural element of a study,
or a reasoning strategy), the instruction is very operational. It described what a coder
should look for in the data to decide whether this code should be applied. It typically
also describes edge cases and uses those to refer to other codes, for example: “Use this

70

code for expressions that relate directly to authors’ expectations regarding the outcome
variables of the study. However, do not use this code for expectations regarding variables
that are included in the design as predictors or covariates. In those cases, instead attach
the codes with identifiers expect_varPredictor and expect_varCovariate.”

In addition to these four basic characteristics, it is often beneficial to include examples of data
that should or should not be coded with the code. Specifically, it is helpful to include four
types of examples:

• examples of data fragments that should be coded with the code according to the code
description and coding instructions (matches);

• examples of data fragments that should not be coded with the code according to the
code description and coding instructions (mismatches);

• examples of data fragments that are relatively ambiguous to classify (edge cases);
• examples of data fragments that are very easy to classify (core cases);

Developing these four types (core case matches, core case mismatches, edge case matches, and
edge case mismatches) help establish what you consider to be clear core examples of what
should and should not be coded, as well as where the codes’ conceptual boundaries lie.

An example of a codebook in spreadsheet format is available here. Note that this example
is for a codebook as applied to qualitative data as produced in individual interviews with
participants, so the types of codes will probably be quite different from the types of codes you
use in systematic reviews.

When developing your codebook, you aim to describe the codes so explicitly, accurately, and
comprehensively that others can also use the codebook. Ideally, everybody who uses the
codebook codes the data in the same way. If there are resources for this in your project, it
pays to have multiple coders and develop the codebook together. If you manage to create a
codebook that indeed can be applied by others to arrive at the same codings (i.e. the same
codes applied to the same data fragments), you know you have described the codes sufficiently
clearly to be transparent about the relevant parts of the data as captures by the codes.

16.3.2 Inductive versus deductive coding

Coding occurs on a spectrum from fully inductive to fully deductive, with most cases being
somewhere in the middle.

Fully inductive coding means you have no preliminary ideas about what kind of codes you
may encounter. This is also called ‘open coding’. In this case you start without a codebook,
and you create the codebook as you develop your codes from scratch.

Fully deductive coding means you start out with a full codebook. If you really only code
deductively, that implies that the codebook will not be updated, because such updates suggest
that you still learn about the concepts you’re coding, which would suggest you work partly

71

https://docs.google.com/spreadsheets/d/1gVx5uhYzqcTH6Jq7AYmsLvHSBaYaT-23c7ZhZF4jmps/edit#gid=2089358441

inductively after all. In the context of a systematic review, it’s unlikely (but not impossible)
that you decide to code an entity deductively. After all, if you already know pretty much
everything about it, you can often capture this knowledge in categorical entities, and so you
categorize upon entity extraction (and do not extract raw source data such as text strings).

Often, you have some idea as to which codes you’ll probably use, but you’re also often open
to changing these (maybe even completely if necessary), so it’s quite common to have a very
rudimentary codebook when you start coding, but to heavily develop this further during
coding.

16.3.3 Coding in the ROCK standard

The {metabefor} package can export entities to and from the ROCK format (see this manual
page). The ROCK format is the format for the Reproducible Open Coding Kit: a standard to
store coded qualitative data in a format that is simultaneously human- and machine-readable
(for more information, see http://rock.science).

When importing ROCK data that was previously exported by the {metabefor}, the codes can
be combined with the other extracted data. This realizes a fully transparent process, where it
is clear which raw data were coded, which codes were applied to which entities (using which
codebook), and how these are combined with the rest of the extracted data.

The ROCK standard consists of plain-text files (just like .Rxs.Rmd files are plain text files).
These can be opened with any software that can edit text files, such as RStudio, Notepad++,
or stock applications that come with your operating system, such as Notepad on Windows and
TextEdit on MacOS. To code a data fragment with a code, simply add the code identifier for
that code at the end of the same line as the data fragment, in between two square brackets.

This is an example of a coded data fragment:

This is some text in the fragment. [[this_is_a_code_identifier]]

It is also possible to attach multiple codes:

This is some other text fragment. [[code1]] [[code2]]

This is an example of some exported and then coded entity values:

[[rxsSourceId=gpg36g]]
[[rxsEntityId=population]]

hotel employees on the Canary Islands [[employees]]

72

https://metabefor.opens.science/reference/rock_import_and_export.html
https://metabefor.opens.science/reference/rock_import_and_export.html
http://rock.science

[[rxsSourceId=qurid_7pdb7n68]]
[[rxsEntityId=population]]

undergraduates from a public university [[students]]

[[rxsSourceId=gnt2hz]]
[[rxsEntityId=population]]

healthcare professionals working in a in a hospital in the Northern Italy [[employees]]

[[rxsSourceId=knfh]]
[[rxsEntityId=population]]

employees of an Italian subsidiary of a European multinational company [[employees]]
active in the food producer sector

The two codes at the start of every fragment are added by the {metabefor} package when it
exports the entity values to the .rock file. The rxsSourceId is the source identifier of the
source from which the following entity value was extracted. The rxsEntityId is the identifier
of the entity from that that entity value was extracted (in this case, we’re coding the authors’
description of the population they studied).

The codes that were added by the researcher have code identifiers students and employees,
and the fact that these are not just words (parts of the data) but codes that have been attached
to the data is signified by the double square brackets surrounding each code identifier.

During coding, the things that costs most time is thinking. Thinking about whether a given
code applies; thinking about whether the code book should be updated; and if so, how. The
time you spend actually attaching the code is often negligible compared to the time you need
for thinking. Coding is mostly an intellectual effort, and the operational side (i.e. adding the
code identifier to the .rock file) is relatively small. Therefore, often you might as well type the
code identifier in a text editor. However, if you want, there is a rudimentary interface to add
codes called iROCK. You can access it at https://i.rock.science. If you use iROCK, make sure
you download the coded file again and store it locally: if you forget to download it and close
your browser, you lose all your work. A part of the workshop about the ROCK explains how to
work with iROCK, in case you want more information: https://rock.science/workshop/2hr.

73

https://i.rock.science
https://rock.science/workshop/2hr

16.3.4 After the coding

Once you finished coding a source, it can be imported again and the codes will be added to
the rest of the extracted data. You can then include this in datasets you want to extract from
the object with extracted data. If you are doing this as a student, your supervisor will most
likely handle the importing and the production of the dataset, which they will then send to
you in .xlsx, .csv, .obv, or .sav format.

74

17 Ops for the synthesis

75

Part IV

References and Appendices

76

18 Example Projects

18.1 NITRO

The best example project to check out might be the Narrated Illustration of a Transparent
Review Outline, or NITRO. NITRO is a bare-bones but narrated illustration of an (excessively
simple) scoping review.

It is hosted in this Git repository at GitLab. That means that you can easily download all
files (for example in this zip archive) or clone the project. The rendered R Markdown file is
served here by GitLab Pages.

18.2 Ongoing projects

These are the Rxs specification spreadsheets and Git repositories for a number of ongoing
projects.

• VERLICHT Scoping Review 1 - Financial Literacy: Rxs Spec | Git repo
• VERLICHT Scoping Review 2 - Green Spaces: Rxs Spec | Git repo

18.3 Preregistrations

Note that you have to open the PDF in these preregistrations!

• Extending the Earcheck: https://osf.io/v5jb8
• VERLICHT Scoping Review 1 - Financial Literacy: https://osf.io/nu69h
• A Scoping Review of Social Support and Academic Achievement - https://osf.io/azrkj |

Update: https://osf.io/mc8ny
• Financial literacy, constituent behaviors and associations with financial resilience - a

scoping review: https://osf.io/2c6rz
• A Systematic Review of Works in Quantitative Ethnography https://osf.io/by7me

77

https://gitlab.com/sci-ops/narrated-illustration-of-a-transparent-review-outline
https://gitlab.com/sci-ops/narrated-illustration-of-a-transparent-review-outline/-/archive/main/narrated-illustration-of-a-transparent-review-outline-main.zip
https://sci-ops.gitlab.io/narrated-illustration-of-a-transparent-review-outline
https://docs.google.com/spreadsheets/d/1jk_Y9PUmyN-DHGLrCcWid3-Kh9DahaN0BMTamSwcyvQ
https://docs.google.com/spreadsheets/d/1fi8DV5cS6UePFDxaZioZP2SOSpGSgwxZ1TxxFB9o2fM
https://osf.io/v5jb8
https://osf.io/nu69h
https://osf.io/azrkj
https://osf.io/mc8ny
https://osf.io/2c6rz
https://osf.io/by7me

18.4 Finished real-life projects

In addition, this is a list of example metabefor projects. They vary in scope: for example,
some are bachelor’s or master’s thesis projects, others are done in the context of a PhD. thesis
or are community-run living reviews.

• Drugs and Crime Scoping Review, GitLab
• Habituation versus Inhibition in Exposure Therapy, OSF
• A Systematic Review of Works in Quantitative Ethnography, OSF
• Extending the Earcheck Living Review, OSF, GitLab, GitLab Pages, Rxs Spec

78

https://gitlab.com/matherion/drugs-and-crime-scoping-review
https://osf.io/3nze4/
https://osf.io/pa9jv/
https://osf.io/53wyk/
https://gitlab.com/extending-the-earcheck/living-review
https://extending-the-earcheck.gitlab.io/living-review/
https://docs.google.com/spreadsheets/d/1duDKLMmhel_5fBPhF_H-0Dbic896-5eCef9bBCSJMco

19 Glossary

This glossary contains definitions of terms used in when describing evidence synthesis (e.g.,
systematic reviews) as well as terms introduced by {metabefor}.

Block core The block core is is a part of an Rxs file: it is the part of an entity block where the
extracted value for an entity is specified during extraction. This is explained in detail in
the Execution: Extraction chapter (Chapter 12 in this version of the book).

Block end marker The block end marker is a part of an Rxs file: it is a sequence of characters
that denote that en entity block ends (which was started by a block start marker). This
is explained in detail in the Execution: Extraction chapter (Chapter 12 in this version
of the book).

Block start marker The block start marker is a part of an Rxs file: it is a sequence of charac-
ters that denote that en entity block starts (which is then ended by a block end marker).
This is explained in detail in the Execution: Extraction chapter (Chapter 12 in this
version of the book).

Container entity An entity that does not store a value (i.e. cannot itself be extracted) but
serves to organise other entities in a hierarchy. For example, a container entity could be
“Provenance”, containing “regular” entities “Authors”, “Region”, and “Date”. For the
latter three, values are extracted, and though those three together can form a source’s
provenance, the entity provenance itself has no value: it just contains the other three
entities.

Cluster A set of entities specified in a list in a parent entity: see clustering entity and clustered
entity.

Clustered entity An entity that is specified in a list within a clustering entity. To specify that
an entity is a value list entity, specify as its parent entity a clustering entity. Clustering
entities are presented in a list in the Rxs template (within the parent entity). The coding
guides that are normally presented above and below every entity are then concatenated
and shows after it. This has two drawbacks. First, if word wrapping is active, it makes the
Rxs file look quite messy and potentially intimidating. Second, since the descriptions
and examples are less salient, this is a bit less straightforward for extractors, so may
require more intensive training.

Clustering entity An entity that as its value contains a list of clustered entities. To specify that
an entity is a clustering entity, set the list column in the Rxs specification spreadsheet
to TRUE. All entities that specify that clustering entity as parent will then be presented
in a list within that entity in the Rxs template. They are useful to efficiently extract
closely related information. For example, characteristics of a variable that is reported on

79

https://sysrevving.com/execution-extraction.html
https://sysrevving.com/execution-extraction.html
https://sysrevving.com/execution-extraction.html

in a source; various possible effect size measures that could be reported to describe an
association; or closely related characteristics of a procedure that is described in a source.

Entity Something that can be extracted from a source: examples are effect sizes, sample sizes,
study design characteristics, author names, publication dates, journal names, whether
sampling strategies were justified, or the literal text used to phrase the main conclusion.
Once an extraction script has been parsed, entities are also commonly referred to as
fields that hold values. However, note that entities can be repeating: they refer to a
type of thing that can be extracted, not to any specific thing that has been extracted,
whereas a field always holds a specific extracted value. For example, it is possible to
specify a clustering entity called result_association used to extract various effect
sizes or other statistics that may be specified to describe an association between two
variables, each as a clustered entity, e.g. entities called pearson_r and cohen_d. In
any given extraction script, multiple instances of that result_association entity can
be extracted, each being represented by a different entity node, and each of those
clustering entities holding multiple clustered entities or fields. Each entity node holds a
pearson_r field and a cohen_d field, but in the extraction script specification, only one
entity is specified for each of result_association, pearson_r, and cohen_d. To refer
explicitly to the entity as a “thing that can be extracted”, you can use the terms entity
specification or extractable entity. To refer explicitly to an entity that has been extracted,
use field or extracted entity.

Entity block An entity block is a part of an Rxs file: it is a block in that plain text file with
the information about an entity to extract. It starts with a block start marker and ends
with a block end marker. This is explained in detail in the Execution: Extraction chapter
(Chapter 12 in this version of the book).

Entity container See container entity.
Entity description sub-block An entity description sub-block is a part of an Rxs file: it spec-

ified the label and the description of the entity to extract in the entity block it is a part
of. This is explained in detail in the Execution: Extraction chapter (Chapter 12 in this
version of the book).

Entity identifier The unique identifier of an entity as specified in the identifier column of
the extraction script specification.

Entity node In the data.tree object representing each extracted source, entities are stored
as nodes in a hierarchical tree. In this tree, each entity correponds to one or more entity
nodes, except for clustered entities, which are stored as values in a list in the entity node
representing their clustering entity (i.e. their parent entity).

Entity node identifier The unique identifier of an extracted entity (i.e. an instance of an entity
specification)

Entity specification A way to explicitly refer to an entity in its generic definition, as a class
of things that can be extracted, as opposed to as a field or entity node, which represents
an extracted entity. This distinction is important because entities can be repeated (see
entity).

Extractable entity See entity specification.
Extracted entity A way to explicitly refer to an entity that has been extracted, as an instance

80

https://sysrevving.com/execution-extraction.html
https://sysrevving.com/execution-extraction.html

of the entity specification or extractable entity (a generic description of a class of things
that can be extracted). Extracted entities are entity nodes unless they are clustered
entities, in which case they are stored as fields holding values in a list in their parent
entity (i.e. their clustering entity). Extracted entities that are entity nodes are either
container entities (if they don’t store a value themselves, but instead are used to organise
other entities), fields (if they hold a single value), or clustering entities (if they hold a
list specifying the values for multiple clustered entities).

Extraction The act of registering an entity in an extraction script (or extraction form, if
metabefor isn’t used) in the form of a text string or an entity conform the coding
instructions (as specified in the Rxs specification if metabefor is used).

Extraction script (.Rxs file) An R Markdown file with the extension .Rxs.Rmd that is a com-
pleted Rxs template, and as such, set up such that it can be parsed by metabefor.

Extraction script specification A spreadsheet specifying which entities to extract, how they
are hierarchically structured, which value templates they use, and their extraction in-
structions (or coding instructions).

Field A synonym of entity that is used when it is referred to as a specific value holder in
the context of a completed extraction script. For example, when in an extraction script
specification an entity is specified to extract the source’s publication date with entity
identifier pub_date, in the parsed extraction script, the value of that date can be referred
to as being stored in the pub_date field. A field represents an instance of an entity: see
that definition for more details.

List A list of multiple clustered entities. Lists are an efficient way to extract closely related
entities, such as measurement details about a given variable, descriptives for an outcome,
or various effect size metrics that may be reported.

Rxs file A file with an R extraction script. One example is an Rxs template as produced
by [metabefor::rxs_fromSpecifications()], but usually these Rxs files will be completed
versions of that template, each containing one or more extracted entities from a source.
Rxs files have the extension .Rxs.Rmd.

Rxs specification See extraction script specification.
Rxs template The structured R Markdown file produced by metabefor after it parsed the

Rxs specification spreadsheet.
Source Something that entities can be extracted from, such as an article, book, case law,

report, webpage, or other source.
Value A value; usually a single number or character string, but values can be more complex,

too, e.g. vectors of numbers of strings, or even tables (matrices or arrays).
Value description sub-block A value description sub-block is a part of an Rxs file: it specified

the value to extract for the entity in the entity block it is a part of. This is explained in
detail in the Execution: Extraction chapter (chapter @ref(execution-extraction) in this
version of the book).

Value list A list of values; a synonym for all extracted clustered entities stored in an extracted
clustering entity.

Value templates In an Rxs specification, a template for a data type that can be extracted,
specifying the values that are allowed, the default value, instructions, and validation

81

https://sysrevving.com/execution-extraction.html

rules.

82

20 Notes

83

21 Drafts

roles researches

84

	Preface
	Types of reviews
	Narrative Reviews
	Conceptual Reviews
	Systematic Reviews
	Meta-analyses
	Scoping Reviews

	Planning
	Introduction to Planning
	Overview
	Be explicit for redundancy, transparency, and future you

	Research Questions
	Systematic Reviews
	Scoping Reviews

	Planning the Synthesis
	Planning the Extraction
	Introduction to extraction
	Entities
	Identifiers and titles
	Descriptions and extraction instructions
	Values to be extracted
	Hierarchical structure and container entities
	Repeating entities
	Clustering entities (`lists')

	Value Templates
	Validation of extracted values

	Details of the Rxs specification
	The entities worksheet
	The valueTemplates worksheet
	The definitions worksheet
	The instructions worksheet
	The texts worksheet

	Post-hoc entity specification: Txs specifications

	The Categorization-Coding Continuum
	Categorization
	Ambiguity
	The cost of categorization
	Coding after extraction
	The categorization-coding continuum

	Planning the Screening
	Planning the Search
	Query Crafting
	Queries as logical expressions
	Database fields
	Wildcard characters
	Team Consensus and Expert Consultation
	Databases versus Interfaces
	``Smart'' searching
	Query validation
	Exporting query hits

	(Pre)registrations

	Execution
	Executing the Search
	Running your queries
	Exporting query hits
	Importing your search hits
	Deduplicating your search hits

	Executing the Screening
	Prepare JabRef for screening
	Screening in JabRef

	Executing the Extraction
	Data management
	Extracting entities
	The structure of an Rxs file
	The bits you can ignore
	The sourceId block
	The extractorId block
	Starting the actual extraction
	Entity containers
	Clustering entities
	Repeating entities

	Validation of extracted entities
	Contact with authors

	Executing the Synthesis

	Operations
	Ops for the search
	Ops for the screening
	First time: preparing a PC
	Downloading and installing JabRef
	Configuring JabRef

	In every screening session

	Ops for the extraction
	First time: preparing a PC
	Installing the software
	Installing the R packages
	Cloning the repository

	For every source
	Coding an extracted entity
	Your codebook
	Inductive versus deductive coding
	Coding in the ROCK standard
	After the coding

	Ops for the synthesis

	References and Appendices
	Example Projects
	NITRO
	Ongoing projects
	Preregistrations
	Finished real-life projects

	Glossary
	Notes
	Drafts

